Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters

A Publisher Correction to this article was published on 04 November 2020

This article has been updated


Surface heating membrane distillation overcomes several limitations inherent in conventional membrane distillation technology. Here we report a successful effort to grow in situ a hexagonal boron nitride (hBN) nanocoating on a stainless-steel wire cloth (hBN-SSWC), and its application as a scalable electrothermal heating material in surface heating membrane distillation. The novel hBN-SSWC provides superior vapour permeability, thermal conductivity, electrical insulation and anticorrosion properties, all of which are critical for the long-term surface heating membrane distillation performance, particularly with hypersaline solutions. By simply attaching hBN-SSWC to a commercial membrane and providing power with an a.c. supply at household frequency, we demonstrate that hBN-SSWC is able to support an ultrahigh power intensity (50 kW m−2) to desalinate hypersaline solutions with exceptionally high water flux (and throughput), single-pass water recovery and heat utilization efficiency while maintaining excellent material stability. We also demonstrate the exceptional performance of hBN-SSWC in a scalable and compact spiral-wound electrothermal membrane distillation module.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Hexagonal boron nitride as a multifunctional coating on SSWC in electrothermal SHMD.
Fig. 2: Growth of high-quality hBN nanocoatings on SSWC.
Fig. 3: The hBN-SSWC supports high-energy input in SHMD to realize high performance.
Fig. 4: The hBN-coating-enabled long-term operation of SSWC in SHMD.
Fig. 5: Magnified hBN-SSWC fabrication and its application in novel spiral-wound electrothermal SHMD.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The code utilized during the current study is available from the corresponding author on reasonable request.

Change history

  • 04 November 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Dongare, P. D. et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl Acad. Sci. USA 114, 6936–6941 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Deshmukh, A. et al. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energy Environ. Sci. 11, 1177–1196 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. & Moulin, P. Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Shaffer, D. L. et al. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environ. Sci. Technol. 47, 9569–9583 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Lawson, K. W. & Lloyd, D. R. Membrane distillation. J. Membr. Sci. 124, 1–25 (1997).

    CAS  Article  Google Scholar 

  7. 7.

    Tow, E. W. et al. Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation. J. Membr. Sci. 556, 352–364 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Dudchenko, A. V., Chen, C., Cardenas, A., Rolf, J. & Jassby, D. Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes. Nat. Nanotechnol. 12, 557–563 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Tan, Y. Z., Chandrakant, S. P., Ang, J. S. T., Wang, H. & Chew, J. W. Localized induction heating of metallic spacers for energy-efficient membrane distillation. J. Membr. Sci. 606, 118150 (2020).

    CAS  Article  Google Scholar 

  10. 10.

    Boo, C. & Elimelech, M. Thermal desalination membranes: carbon nanotubes keep up the heat. Nat. Nanotechnol. 12, 500–503 (2017).

    Article  Google Scholar 

  11. 11.

    Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–725 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    Falin, A. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 8, 15815 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    Jiang, P., Qian, X., Yang, R. & Lindsay, L. Anisotropic thermal transport in bulk hexagonal boron nitride. Phys. Rev. Mater. 2, 064005 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Chilkoor, G. et al. Hexagonal boron nitride: the thinnest insulating barrier to microbial corrosion. ACS Nano 12, 2242–2252 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Zhang, J., Yang, Y. C. & Lou, J. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution. Nanotechnology 27, 364004 (2016).

    Article  Google Scholar 

  18. 18.

    Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Liu, Z. et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 4, 2541 (2013).

    Article  Google Scholar 

  20. 20.

    Costescu, R., Cahill, D., Fabreguette, F., Sechrist, Z. & George, S. Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303, 989–990 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    Abdulagatov, A. et al. Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. ACS Appl. Mater. Interfaces 3, 4593–4601 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Liu, Z. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 8, 119–124 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Pakdel, A., Zhi, C., Bando, Y. & Golberg, D. Low-dimensional boron nitride nanomaterials. Materials Today 15, 256–265 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Sun, J. et al. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem. Soc. Rev. 47, 4242–4257 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Lu, G. et al. Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy. Nat. Commun. 6, 6160 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Lu, G. et al. Synthesis of high-quality graphene and hexagonal boron nitride monolayer in-plane heterostructure on Cu–Ni alloy. Adv. Sci. 4, 1700076 (2017).

    Article  Google Scholar 

  27. 27.

    Zhang, Z., Liu, Y., Yang, Y. & Yakobson, B. I. Growth mechanism and morphology of hexagonal boron nitride. Nano Lett. 16, 1398–1403 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Chen, T.-C., Ho, C.-D. & Yeh, H.-M. Theoretical modeling and experimental analysis of direct contact membrane distillation. J. Membr. Sci. 330, 279–287 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    Lin, S., Yip, N. Y. & Elimelech, M. Direct contact membrane distillation with heat recovery: thermodynamic insights from module scale modeling. J. Membr. Sci. 453, 498–515 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Naidu, G., Jeong, S., Choi, Y. & Vigneswaran, S. Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential. J. Membr. Sci. 524, 565–575 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Luo, W. H. et al. An osmotic membrane bioreactor–membrane distillation system for simultaneous wastewater reuse and seawater desalination: performance and implications. Environ. Sci. Technol. 51, 14311–14320 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Efome, J. E., Rana, D., Matsuura, T. & Lan, C. Q. Enhanced performance of PVDF nanocomposite membrane by nanofiber coating: a membrane for sustainable desalination through MD. Water Res. 89, 39–49 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Mericq, J. P., Laborie, S. & Cabassud, C. Vacuum membrane distillation of seawater reverse osmosis brines. Water Res. 44, 5260–5273 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    Zhang, Y., Peng, Y., Ji, S., Li, Z. & Chen, P. Review of thermal efficiency and heat recycling in membrane distillation processes. Desalination 367, 223–239 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Leitch, M. E., Li, C., Ikkala, O., Mauter, M. S. & Lowry, G. V. Bacterial nanocellulose aerogel membranes: novel high-porosity materials for membrane distillation. Environ. Sci. Technol. Lett. 3, 85–91 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Deshmukh, A. & Elimelech, M. Understanding the impact of membrane properties and transport phenomena on the energetic performance of membrane distillation desalination. J. Membr. Sci. 539, 458–474 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Alsaadi, A. S. et al. Modeling of air-gap membrane distillation process: a theoretical and experimental study. J. Membr. Sci. 445, 53–65 (2013).

    CAS  Article  Google Scholar 

  38. 38.

    Al-Obaidani, S. et al. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. J. Membr. Sci. 323, 85–98 (2008).

    CAS  Article  Google Scholar 

  39. 39.

    Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    Hattori, Y., Taniguchi, T., Watanabe, K. & Nagashio, K. Layer-by-layer dielectric breakdown of hexagonal boron nitride. ACS Nano 9, 916–921 (2015).

    CAS  Article  Google Scholar 

Download references


This work was supported by the NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (EEC-1449500) and the NSF I/UCRC Center for Atomically Thin Multifunctional Coatings (ATOMIC) under award number IIP-1539999.

Author information




K.Z. and W.W. contributed equally to this work; they designed and performed the experiments, analysed the data and wrote the manuscript. J.L, Q.L., P.M.A. and M.E. conceived the idea, revised the manuscript and led the project. S.J., H.G., R.X. and A.D. assisted with the sample growth, TEM characterization, MD operation and simulation, respectively.

Corresponding authors

Correspondence to Pulickel M. Ajayan or Jun Lou or Qilin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Shihong Lin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6, Figs. 1–16 and refs. 1–53.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuo, K., Wang, W., Deshmukh, A. et al. Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters. Nat. Nanotechnol. 15, 1025–1032 (2020).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research