Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface spin magnetism controls the polarized exciton emission from CdSe nanoplatelets

Abstract

The surface of nominally diamagnetic colloidal CdSe nanoplatelets can demonstrate paramagnetic behaviour owing to the uncompensated spins of dangling bonds, as we reveal here by optical spectroscopy in high magnetic fields up to 15 T using the exciton spin as a probe of the surface magnetism. The strongly nonlinear magnetic field dependence of the circular polarization of the exciton emission is determined by the magnetization of the dangling-bond spins (DBSs), the exciton spin polarization as well as the spin-dependent recombination of dark excitons. The sign of the exciton–DBS exchange interaction depends on the nanoplatelet growth conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PL spectra and recombination dynamics.
Fig. 2: Exciton polarization in Sample 1.
Fig. 3: Exciton and trion polarization in different samples.
Fig. 4: Concept and theory.

Similar content being viewed by others

Data availability

The data on which the plots within this paper are based and other findings of this study are available from the corresponding authors upon justified request.

References

  1. Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015).

    CAS  Google Scholar 

  2. Pietryga, J. M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    CAS  Google Scholar 

  3. Nasilowski, M., Mahler, B., Lhuillier, E., Ithurria, S. & Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 116, 10934–10982 (2016).

    CAS  Google Scholar 

  4. Owen, J. The coordination chemistry of nanocrystal surfaces. Science 347, 615–616 (2015).

    CAS  Google Scholar 

  5. Drijvers, E., De Roo, J., Martins, J. C., Infante, I. & Hens, Z. Ligand displacement exposes binding site heterogeneity on CdSe nanocrystal surfaces. Chem. Mater. 30, 1178–1186 (2018).

    CAS  Google Scholar 

  6. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    CAS  Google Scholar 

  7. Lorenzon, M. et al. Reversed oxygen sensing using colloidal quantum wells towards highly emissive photoresponsive varnishes. Nat. Commun. 6, 6434 (2015).

    CAS  Google Scholar 

  8. Owen, J. & Brus, L. Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots. J. Am. Chem. Soc. 139, 10939–10943 (2017).

    CAS  Google Scholar 

  9. Singh, S. et al. Colloidal CdSe nanoplatelets, a model for surface chemistry/optoelectronic property relations in semiconductor nanocrystals. J. Am. Chem. Soc. 140, 13292–13300 (2018).

    CAS  Google Scholar 

  10. Meerbach, C. et al. Brightly luminescent core/shell nanoplatelets with continuously tunable optical properties. Adv. Opt. Mater. 7, 1801478 (2019).

    Google Scholar 

  11. Ning, Z. et al. Role of surface ligands in optical properties of colloidal CdSe/CdS quantum dots. Phys. Chem. Chem. Phys. 13, 5848–5854 (2011).

    CAS  Google Scholar 

  12. Crespo, P. et al. Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys. Rev. Lett. 93, 087204 (2004).

    CAS  Google Scholar 

  13. Yamamoto, Y. et al. Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys. Rev. Lett. 93, 116801 (2004).

    CAS  Google Scholar 

  14. Meulenberg, R. W. et al. Evidence for ligand-induced paramagnetism in CdSe quantum dots. J. Am. Chem. Soc. 131, 6888–6889 (2009).

    CAS  Google Scholar 

  15. Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988).

    CAS  Google Scholar 

  16. Beaulac, R. et al. Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots. Nano Lett. 8, 1197–1201 (2008).

    CAS  Google Scholar 

  17. Delikanli, S. et al. Mn2+-doped CdSe/CdS core/multishell colloidal quantum wells enabling tunable carrier-dopant exchange interactions. ACS Nano 9, 12473–12479 (2015).

    CAS  Google Scholar 

  18. Rodina, A. & Efros, Al. L. Magnetic properties of nonmagnetic nanostructures: dangling bond magnetic polaron in CdSe nanocrystals. Nano Lett. 15, 4214–4222 (2015).

    CAS  Google Scholar 

  19. Biadala, L. et al. Magnetic polaron on dangling-bond spins in CdSe colloidal nanocrystals. Nat. Nanotechnol. 12, 569–575 (2017).

    CAS  Google Scholar 

  20. Ithurria, S. & Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 130, 16504–16505 (2008).

    CAS  Google Scholar 

  21. Shornikova, E. V. et al. Addressing the exciton fine structure in colloidal nanocrystals: the case of CdSe nanoplatelets. Nanoscale 10, 646–656 (2018).

    CAS  Google Scholar 

  22. Rodina, A. V., Golovatenko, A. A., Shornikova, E. V., Yakovlev, D. R. & Efros, Al. L. Effect of dangling bond spins on the dark exciton recombination and spin polarization in CdSe colloidal nanostructures. J. Electron. Mater. 47, 4338–4344 (2018).

    CAS  Google Scholar 

  23. Ithurria, S., Bousquet, G. & Dubertret, B. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 133, 3070–3077 (2011).

    CAS  Google Scholar 

  24. Bertrand, G. H. V., Polovitsyn, A., Christodoulou, S., Khana, A. H. & Moreels, I. Shape control of zincblende CdSe nanoplatelets. Chem. Commun. 52, 11975–11978 (2016).

    CAS  Google Scholar 

  25. Shornikova, E. V. et al. Electron and hole g-factors and spin dynamics of negatively charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Nano Lett. 18, 373–380 (2018).

    CAS  Google Scholar 

  26. Cruguel, H. et al. Electronic structure of CdSe-ZnS 2D nanoplatelets. Appl. Phys. Lett. 110, 152103 (2017).

    Google Scholar 

  27. Biadala, L. et al. Recombination dynamics of band edge excitons in quasi-two-dimensional CdSe nanoplatelets. Nano Lett. 14, 1134–1139 (2014).

    CAS  Google Scholar 

  28. Efros, Al. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    CAS  Google Scholar 

  29. Rodina, A. V. & Efros, Al. L. Radiative recombination from dark excitons: activation mechanisms and polarization properties. Phys. Rev. B 93, 155427 (2016).

    Google Scholar 

  30. Johnston-Halperin, E. et al. Spin spectroscopy of dark excitons in CdSe quantum dots to 60 T. Phys. Rev. B 63, 205309 (2001).

    Google Scholar 

  31. Furis, M., Hollingsworth, J. A., Klimov, V. I. & Crooker, S. A. Time- and polarization-resolved optical spectroscopy of colloidal CdSe nanocrystal quantum dots in high magnetic fields. J. Phys. Chem. B 109, 15332 (2005).

    CAS  Google Scholar 

  32. Turyanska, L. et al. Photoluminescence of PbS nanocrystals at high magnetic fields up to 30 T. Phys. Rev. B 82, 193302 (2010).

    Google Scholar 

  33. Liu, F. et al. Spin dynamics of negatively charged excitons in CdSe/CdS colloidal nanocrystals. Phys. Rev. B 88, 035302 (2013).

    Google Scholar 

  34. Siebers, B. et al. Exciton spin dynamics and photoluminescence polarization of CdSe/CdS dot-in-rod nanocrystals in high magnetic fields. Phys. Rev. B 91, 155304 (2015).

    Google Scholar 

  35. Wojtowicz, T. et al. g-factor dependence of the evolution of magneto-optical spectra with the density of quasi-two-dimensional electrons in Cd1−xMnxTe/Cd1−yMgyTe heterostructures. Phys. Rev. B 59, R10437–R10440 (1999).

    CAS  Google Scholar 

  36. Ditina, Z. Z. & Strakhov, L. P. Investigation of surface of cadmium selenide by EPR method. Sov. Phys. Solid State 9, 2000–2003 (1968).

    Google Scholar 

  37. Li, Z. & Peng, X. Size/shape-controlled synthesis of colloidal CdSe quantum disks: ligand and temperature effects. J. Am. Chem. Soc. 133, 6578–6586 (2011).

    CAS  Google Scholar 

  38. Rodina, A. V., Golovatenko, A. A., Shornikova, E. V. & Yakovlev, D. R. Spin physics of excitons in colloidal nanocrystals. Phys. Solid State 60, 1537–1553 (2018).

    CAS  Google Scholar 

  39. Kudlacik, D. et al. Single and double electron spin-flip Raman scattering in CdSe colloidal nanoplatelets. Nano Lett. 20, 517–525 (2020).

    CAS  Google Scholar 

  40. Guzelturk, B., Erdem, O., Olutas, M., Kelestemur, Y. & Demir, H. V. Stacking in colloidal nanoplatelets: tuning excitonic properties. ACS Nano 8, 12524–12533 (2014).

    CAS  Google Scholar 

  41. Tessier, M. D. et al. Phonon line emission revealed by self-assembly of colloidal nanoplatelets. ACS Nano 7, 3332–3340 (2013).

    CAS  Google Scholar 

  42. Rowland, C. E. et al. Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids. Nat. Mater. 14, 484–489 (2015).

    CAS  Google Scholar 

  43. Tessier, M. D., Javaux, C., Maksimovic, I., Loriette, V. & Dubertret, B. Spectroscopy of single CdSe nanoplatelets. ACS Nano 6, 6751–6758 (2012).

    CAS  Google Scholar 

  44. Kunneman, L. T. et al. Nature and decay pathways of photoexcited states in CdSe and CdSe/CdS nanoplatelets. Nano Lett. 14, 7039–7045 (2014).

    CAS  Google Scholar 

  45. Olutas, M. et al. Lateral size-dependent spontaneous and stimulated emission properties in colloidal CdSe nanoplatelets. ACS Nano 9, 5041–5050 (2015).

    CAS  Google Scholar 

  46. Lepine, D. J. Spin-dependent recombination on silicon surface. Phys. Rev. B 6, 436–441 (1972).

    CAS  Google Scholar 

  47. Paget, D. Optical-pumping study of spin-dependent recombination in GaAs. Phys. Rev. B 30, 931–946 (1984).

    CAS  Google Scholar 

  48. Weisbush, C. & Lampel, G. Spin-dependent recombination and optical spin orientation in semiconductors. Solid State Commun. 14, 141–144 (1974).

    Google Scholar 

Download references

Acknowledgements

We are thankful to Al. L. Efros and Yu. G. Kusrayev for fruitful discussions. We acknowledge the financial support by the Deutsche Forschungsgemeinschaft through the International Collaborative Research Centre TRR160 (Project B1), the Russian Foundation for Basic Research (grant no. 19-52-12064 NNIO-a). A.V.R. acknowledges partial support of the Russian Foundation for Basic Research (grant no. 17-02-01063). A.A.G. acknowledges support of the Grants Council of the President of the Russian Federation. A.P. and I.M. acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 714876 PHOCONA).

Author information

Authors and Affiliations

Authors

Contributions

E.V.S., L.B. and G.Q. performed the measurements under the guidance of D.R.Y. and M.B. A.A.G. performed theoretical modelling of the experimental data under the guidance of A.V.R. E.V.S., A.A.G., A.V.R. and D.R.Y. analysed and interpreted the data. A.K. and M.N. synthesized the nanocrystals (Samples 1, 3 and 4) under the guidance of B.D., and A.P. synthesized nanocrystals (Samples 2 and 5) under the guidance of I.M. E.V.S., A.A.G., A.V.R. and D.R.Y. wrote the manuscript with the assistance of all other co-authors.

Corresponding authors

Correspondence to Elena V. Shornikova, Dmitri R. Yakovlev or Anna V. Rodina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Mikhail Artemyev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Sections 1–5 (additional experimental results, additional theory) and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shornikova, E.V., Golovatenko, A.A., Yakovlev, D.R. et al. Surface spin magnetism controls the polarized exciton emission from CdSe nanoplatelets. Nat. Nanotechnol. 15, 277–282 (2020). https://doi.org/10.1038/s41565-019-0631-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0631-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing