Regioselective magnetization in semiconducting nanorods

Abstract

Chirality—the property of an object wherein it is distinguishable from its mirror image—is of widespread interest in chemistry and biology1,2,3,4,5,6. Regioselective magnetization of one-dimensional semiconductors enables anisotropic magnetism at room temperature, as well as the manipulation of spin polarization—the properties essential for spintronics and quantum computing technology7. To enable oriented magneto-optical functionalities, the growth of magnetic units has to be achieved at targeted locations on a parent nanorod. However, this challenge is yet to be addressed in the case of materials with a large lattice mismatch. Here, we report the regioselective magnetization of nanorods independent of lattice mismatch via buffer intermediate catalytic layers that modify interfacial energetics and promote regioselective growth of otherwise incompatible materials. Using this strategy, we combine materials with distinct lattices, chemical compositions and magnetic properties, that is, a magnetic component (Fe3O4) and a series of semiconducting nanorods absorbing across the ultraviolet and visible spectrum at specific locations. The resulting heteronanorods exhibit optical activity as induced by the location-specific magnetic field. The regioselective magnetization strategy presented here enables a path to designing optically active nanomaterials for chirality and spintronics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Regioselective magnetization of one-dimensional nanorods.
Fig. 2: Structural characterization of ZnxCd1xS-Ag2S/Au@Fe3O4 heteronanorods.
Fig. 3: Growth of quaternary heteronanorods.
Fig. 4: Optical absorption spectroscopy.
Fig. 5: Local magnetic field induces optical activity in colloidal hybrid nanostructures.

Data availability

The data are available from the corresponding authors on reasonable request.

References

  1. 1.

    Berova, N. & Nakanishi, K. in Cicular Dichroism, Principles and Applications (eds Berova, N. et al.) Ch. 8 (Wiley, 1994).

  2. 2.

    Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    Barron, L. D. Chirality and magnetism shake hands. Nat. Mater. 7, 691–692 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    Yin, P., Tan, Y., Fang, H., Hegde, M. & Radovanovic, P. V. Plasmon-induced carrier polarization in semiconductor nanocrystals. Nat. Nanotechnol. 13, 463–467 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Yeom, J. et al. Chiromagnetic nanoparticles and gels. Science 359, 309–314 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Gao, X. et al. Distinct excitonic circular dichroism between wurtzite and zincblende CdSe nanoplatelets. Nano Lett. 18, 6665–6671 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Gao, X. et al. Excitonic eircular dichroism of chiral quantum rods. J. Am. Chem. Soc. 139, 8734–8739 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Barron, L. D. Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, 2009).

  9. 9.

    Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Gao, X., Han, B., Yang, X. & Tang, Z. Perspective of chiral colloidal semiconductor nanocrystals: opportunity and challenge. J. Am. Chem. Soc. 141, 13700–13707 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    Wu, X. J. et al. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nat. Chem. 8, 470–475 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Oh, N. et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science 355, 616–619 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Tan, C., Chen, J., Wu, X.-J. & Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater. 3, 17089 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Zhuang, T.-T. et al. A unique ternary semiconductor–(semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. Engl. 54, 11495–11500 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Li, Y. et al. Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation. Nat. Commun. 9, 4947 (2018).

    Article  Google Scholar 

  16. 16.

    Laurent, S. et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    Ho, D., Sun, X. & Sun, S. Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 44, 875–882 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Ling, D., Lee, N. & Hyeon, T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 48, 1276–1285 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Lee, J., Yang, J., Kwon, S. G. & Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 1, 16034 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Tan, C., Chen, J., Wu, X.-J. & Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater. 3, 17089 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Sun, Y. Interfaced heterogeneous nanodimers. Nat. Sci. Rev. 2, 329–348 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Song, J. et al. Double-layered plasmonic–magnetic vesicles by self-assembly of Janus amphiphilic gold–iron(ii,iii) oxide nanoparticles. Angew. Chem. Int. Ed. Engl. 56, 8110–8114 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Lou, Z. et al. Anisotropic Ag2S–Au triangular nanoprisms with desired configuration for plasmonic photocatalytic hydrogen generation in visible/near-infrared region. Adv. Funct. Mater. 28, 1706969 (2018).

    Article  Google Scholar 

  24. 24.

    Logunov, S. L., Ahmadi, T. S., El-Sayed, M. A., Khoury, J. T. & Whetten, R. L. Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient aAbsorption. Spectrosc. J. Phy. Chem. B 101, 3713–3719 (1997).

    CAS  Article  Google Scholar 

  25. 25.

    Rodger, A., Nordén, B. & Nordén, B. Circular Dichroism and Linear Dichroism (Oxford Univ. Press, 1997).

  26. 26.

    Zhuang, T. T. et al. Controlled synthesis of kinked ultrathin ZnS nanorods/nanowires triggered by chloride ions: a case study. Small 10, 1394–1402 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Schellman, J. A. Circular dichroism and optical rotation. Chem. Rev. 75, 323–331 (1975).

    CAS  Article  Google Scholar 

  28. 28.

    Han, B., Zhu, Z., Li, Z., Zhang, W. & Tang, Z. Conformation modulated optical activity enhancement in chiral cysteine and Au nanorod assemblies. J. Am. Chem. Soc. 136, 16104–16107 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 51732011, 21431006, 21761132008, 81788101, 11227901 and 21805188), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (grant no. 21521001), Key Research Programme of Frontier Sciences, CAS (grant no. QYZDJ-SSW-SLH036), the National Basic Research Programme of China (grant no. 2014CB931800), the Users with Excellence and Scientific Research Grant of Hefei Science Centre of CAS (grant no. 2015HSC-UE007), Anhui Initiative in Quantum Information Technologies (grant no. AHY050000), Ontario Research Fund–Research Excellence Program and the Natural Sciences and Engineering Research Council of Canada.

Author information

Affiliations

Authors

Contributions

S.-H.Y., E.H.S. and Z.T. supervised the project. T.-T.Z. and Y.Li conceived the idea, carried out the experiments, analysed the results and wrote the paper. X.G. helped to perform and analyse the circular dichroism and magnetic circular dichroism data. M.W. and Y.Li collected and analysed the transient absorption spectra. C.Z. helped to synthesize materials. L.D. and Y.-H.S. helped to conduct the magnetothermal and photothermal experiments. J.T. and G.L. helped to characterize the materials. F.P.G.d.A., P.T., X.L., Y.Lu, X.Y., L.Z., F.F. and S.O.K. helped to edit the manuscript. All authors discussed the results and assisted during manuscript preparation.

Corresponding authors

Correspondence to Shu-Hong Yu or Zhiyong Tang or Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Hua Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Tables 1–4, Notes 1–3 and refs 1–16.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuang, TT., Li, Y., Gao, X. et al. Regioselective magnetization in semiconducting nanorods. Nat. Nanotechnol. 15, 192–197 (2020). https://doi.org/10.1038/s41565-019-0606-8

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research