Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface

Abstract

To date, effective control over the electrochemical reduction of CO2 to multicarbon products (C ≥ 2) has been very challenging. Here, we report a design principle for the creation of a selective yet robust catalytic interface for heterogeneous electrocatalysts in the reduction of CO2 to C2 oxygenates, demonstrated by rational tuning of an assembly of nitrogen-doped nanodiamonds and copper nanoparticles. The catalyst exhibits a Faradaic efficiency of ~63% towards C2 oxygenates at applied potentials of only −0.5 V versus reversible hydrogen electrode. Moreover, this catalyst shows an unprecedented persistent catalytic performance up to 120 h, with steady current and only 19% activity decay. Density functional theory calculations show that CO binding is strengthened at the copper/nanodiamond interface, suppressing CO desorption and promoting C2 production by lowering the apparent barrier for CO dimerization. The inherent compositional and electronic tunability of the catalyst assembly offers an unrivalled degree of control over the catalytic interface, and thereby the reaction energetics and kinetics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Preparation of composite materials.
Fig. 2: Structural, configurational and electrochemical characterization of ND and N-ND electrode materials.
Fig. 3: Structural, configurational and electrochemical characterization of N-ND/Cu electrode materials.
Fig. 4: DFT calculations.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  Google Scholar 

  2. 2.

    Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Google Scholar 

  3. 3.

    Voiry, D., Shin, H. S., Loh, K. P. & Chhowalla, M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 1, 0105 (2018).

    Google Scholar 

  4. 4.

    Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

    CAS  Google Scholar 

  5. 5.

    Rao, H., Schmidt, L. C., Bonin, J. & Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548, 74–77 (2017).

    CAS  Google Scholar 

  6. 6.

    Hori, Y. in Modern Aspects of Electrochemistry Vol. 42 (eds Vayenas, C. et al.) 89–189 (Springer, 2008).

  7. 7.

    Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).

    CAS  Google Scholar 

  8. 8.

    Zhu, W. et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833–16836 (2013).

    CAS  Google Scholar 

  9. 9.

    Gao, D. et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288–4291 (2015).

    CAS  Google Scholar 

  10. 10.

    Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

    CAS  Google Scholar 

  11. 11.

    Wang, H. et al. Self-selective catalyst synthesis for CO2 reduction. Joule 3, 1927–1936 (2019).

    CAS  Google Scholar 

  12. 12.

    Zhang, S., Kang, P. & Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734–1737 (2014).

    CAS  Google Scholar 

  13. 13.

    Gao, D. et al. Enhancing CO2 electroreduction with the metal–oxide interface. J. Am. Chem. Soc. 139, 5652–5655 (2017).

    CAS  Google Scholar 

  14. 14.

    Angamuthu, R., Byers, P., Lutz, M., Spek, A. L. & Bouwman, E. Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 327, 313–315 (2010).

    CAS  Google Scholar 

  15. 15.

    Costentin, C., Drouet, S., Robert, M. & Savéant, J.-M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338, 90–94 (2012).

    CAS  Google Scholar 

  16. 16.

    Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    CAS  Google Scholar 

  17. 17.

    Diercks, C. S. et al. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 140, 1116–1122 (2017).

    Google Scholar 

  18. 18.

    Kornienko, N. et al. Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015).

    CAS  Google Scholar 

  19. 19.

    Wang, C., Xie, Z., deKrafft, K. E. & Lin, W. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011).

    CAS  Google Scholar 

  20. 20.

    Verma, S., Kim, B., Jhong, H. R., Ma, S. & Kenis, P. J. A gross‐margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9, 1972–1979 (2016).

    CAS  Google Scholar 

  21. 21.

    Luc, W. & Jiao, F. Nanoporous metals as electrocatalysts: state-of-the-art, opportunities, and challenges. ACS Catal. 7, 5856–5861 (2017).

    CAS  Google Scholar 

  22. 22.

    Cao, Z. et al. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J. Am. Chem. Soc. 138, 8120–8125 (2016).

    CAS  Google Scholar 

  23. 23.

    Zhang, X. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).

    Google Scholar 

  24. 24.

    Li, J. et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 1, 592–600 (2018).

    CAS  Google Scholar 

  25. 25.

    Dinh, C. T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    CAS  Google Scholar 

  26. 26.

    De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Google Scholar 

  27. 27.

    Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

    CAS  Google Scholar 

  28. 28.

    Kim, D., Kley, C. S., Li, Y. & Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

    CAS  Google Scholar 

  29. 29.

    Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

    Google Scholar 

  30. 30.

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    CAS  Google Scholar 

  31. 31.

    Tzeng, Y.-K. et al. Time-resolved luminescence nanothermometry with nitrogen-vacancy centers in nanodiamonds. Nano Lett. 15, 3945–3952 (2015).

    CAS  Google Scholar 

  32. 32.

    Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012).

    CAS  Google Scholar 

  33. 33.

    Liu, Y., Chen, S., Quan, X. & Yu, H. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137, 11631–11636 (2015).

    CAS  Google Scholar 

  34. 34.

    Guo, D. et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016).

    CAS  Google Scholar 

  35. 35.

    Wang, H., Chen, Y., Hou, X., Ma, C. & Tan, T. Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chem. 18, 3250–3256 (2016).

    CAS  Google Scholar 

  36. 36.

    Zou, Y. S. et al. Structural characterization of nitrogen doped diamond-like carbon films deposited by arc ion plating. Appl. Surf. Sci. 241, 295–302 (2005).

    CAS  Google Scholar 

  37. 37.

    Varela, A. S. et al. Metal‐doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int. Ed. Engl. 54, 10758–10762 (2015).

    CAS  Google Scholar 

  38. 38.

    Song, Y. et al. High‐selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N‐doped graphene electrode. ChemistrySelect 1, 6055–6061 (2016).

    CAS  Google Scholar 

  39. 39.

    Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    CAS  Google Scholar 

  40. 40.

    Birdja, Y. Y. & Koper, M. T. The importance of cannizzaro-type reactions during electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 139, 2030–2034 (2017).

    CAS  Google Scholar 

  41. 41.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  Google Scholar 

  42. 42.

    Bhattacharyya, S. et al. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl. Phys. Lett. 79, 1441–1443 (2001).

    CAS  Google Scholar 

  43. 43.

    Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Google Scholar 

  44. 44.

    Liu, C. et al. Stability and effects of subsurface oxygen in oxide-derived Cu catalyst for CO2 reduction. J. Phys. Chem. C 121, 25010–25017 (2017).

    CAS  Google Scholar 

  45. 45.

    Liu, X. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).

    CAS  Google Scholar 

  46. 46.

    Liu, X. et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

    CAS  Google Scholar 

  47. 47.

    Jens, K., Studt, F., Abild-Pedersen, F. & Bligaard, T. (eds) Fundamental Concepts in Heterogeneous Catalysis (John Wiley & Sons, 2014).

  48. 48.

    Cavalca, F. et al. Nature and distribution of stable subsurface oxygen in copper electrodes during electrochemical CO2 reduction. J. Phys. Chem. C 121, 25003–25009 (2017).

    CAS  Google Scholar 

  49. 49.

    Garza, A., Bell, A. T. & Head-Gordon, M. Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper? J. Phys. Chem. Lett. 9, 601–606 (2018).

    CAS  Google Scholar 

  50. 50.

    Yang, H. J. et al. Promoting ethylene selectivity from CO2 electroreduction on CuO supported onto CO2 capture materials. ChemSusChem 11, 881–887 (2018).

    CAS  Google Scholar 

  51. 51.

    Waszczuk, P., Zelenay, P. & Sobkowski, J. Surface interaction of benzoic-acid with a copper electrode. Electrochim. Acta 40, 1717–1721 (1995).

    CAS  Google Scholar 

  52. 52.

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  53. 53.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  54. 54.

    Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245 (1994).

    CAS  Google Scholar 

  55. 55.

    Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    CAS  Google Scholar 

  56. 56.

    Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).

    CAS  Google Scholar 

  57. 57.

    Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

    Google Scholar 

  58. 58.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  59. 59.

    Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 59, 12301–12304 (1999).

    CAS  Google Scholar 

  60. 60.

    Tang, W., Sanville, E. & Henkelman, G. A grid-based bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    CAS  Google Scholar 

  61. 61.

    Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Google Scholar 

  62. 62.

    Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    CAS  Google Scholar 

  63. 63.

    Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

Download references

Acknowledgements

This work was initiated by the support of the Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-76SF00515. Theoretical calculations were supported through the Office of Science of the US Department of Energy under award no. DE-SC0004993 and Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. H.W. acknowledges funding support from the National Postdoctoral Program for Innovative Talents (grant no. BX201600011). Y.T. acknowledges support by grant no. 4309 from the Moore Foundation. T. T. acknowledges the support from National Nature Science Foundation of China (grant no. 21436002 and U1663227). We acknowledge Stanford Nano Shares Facilities for sample preparation and characterization. We acknowledge C. Zhu from Lawrence Berkeley National Laboratory for his help in GIWAXS characterization. Use of the Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515.

Author information

Affiliations

Authors

Contributions

H.W., Y.-K.T., S.C. and Y.C. conceived the research. H.W. and Y.-K.T. carried out the synthesis and performed materials characterization and electrochemical measurements. Y.Li, J.L., X.Zheng, A.Y., Y.Liu, Y.G., L.C., Yu.Li, X.Zhang, W.C., B.L., H.L., N.A.M. and Z.-X.S. assisted in the synthesis and characterization of materials. Y.J. and K.C. carried out the theoretical calculation. H.W., Y.-K.T., Y.J., K.C. and Y.C. analysed the data. H.W., Y.-K.T., Y.J., K.C., T.T., S.C. and Y.C. wrote the paper.

Corresponding authors

Correspondence to Karen Chan or Tianwei Tan or Steven Chu or Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Antonio Martin and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–28, Tables 1–3 and refs. 1–27.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Tzeng, YK., Ji, Y. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 15, 131–137 (2020). https://doi.org/10.1038/s41565-019-0603-y

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research