An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids

Article metrics

Abstract

Affinity-based electrochemical detection in complex biological fluids could enable multiplexed point-of-care diagnostics for home healthcare; however, commercialization of point-of-care devices has been limited by the rapid loss of sensitivity caused by electrode surface inactivation and biofouling. Here, we describe a simple and robust antifouling coating for electrodes consisting of a three-dimensional porous matrix of cross-linked bovine serum albumin supported by a network of conductive nanomaterials composed of either gold nanowires, gold nanoparticles or carbon nanotubes. These nanocomposites prevent non-specific interactions while enhancing electron transfer to the electrode surface, preserving 88% of the original signal after 1 month of exposure to unprocessed human plasma, and functionalization with specific antibodies enables quantification of anti-interleukin 6 in plasma with high sensitivity. The easy preparation, stability and simplicity of this nanocomposite allow the generation of electrochemical biosensors that can operate in complex biological fluids such as blood plasma or serum.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The nanocomposite coating.
Fig. 2: Characterization of the BSA/AuNW/GA nanocomposite.
Fig. 3: Cross-linking of BSA with GA.
Fig. 4: Coating antifouling properties and biosensing performance.

References

  1. 1.

    Dugas, V., Elaissari, A. & Chevalier, Y. in Recognition Receptors in Biosensors (ed Zourob, M.) 47–134 (Springer, 2010).

  2. 2.

    Barfidokht, A. & Gooding, J. J. Approaches toward allowing electroanalytical devices to be used in biological fluids. Electroanalysis 26, 1182–1196 (2014).

  3. 3.

    Campuzano, S., Pedrero, M., Yáñez-Sedeño, P. & Pingarrón, J. M. Antifouling (bio)materials for electrochemical (bio)sensing. Int. J. Mol. Sci. 20, 423 (2019).

  4. 4.

    Chen, S., Li, L., Zhao, C. & Zheng, J. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymers 51, 5283–5293 (2010).

  5. 5.

    Banerjee, I., Pangule, R. C. & Kane, R. S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 23, 690–718 (2011).

  6. 6.

    Kumar, S., Ahlawat, W., Kumar, R. & Dilbaghi, N. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens. Bioelectron. 70, 498–503 (2015).

  7. 7.

    Shein, J. B., Lai, L. M. H., Eggers, P. K., Paddon-Row, M. N. & Gooding, J. J. Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 25, 11121–11128 (2009).

  8. 8.

    Gooding, J. J., Alam, M. T., Barfidokht, A. & Carter, L. Nanoparticle mediated electron transfer across organic layers: from current understanding to applications. J. Braz. Chem. Soc. 25, 418–426 (2014).

  9. 9.

    Barfidokht, A., Ciampi, S., Luais, E., Darwish, N. & Gooding, J. J. Distance-dependent electron transfer at passivated electrodes decorated by gold nanoparticles. Anal. Chem. 85, 1073–1080 (2013).

  10. 10.

    Bard, A. & Faulkner, L. Electrochemical Methods: Fundamentals and Applications (John Wiley & Sons, Inc., 2001).

  11. 11.

    Elgrishi, N. et al. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018).

  12. 12.

    Alam, S. & Mukhopadhyay, A. Conjugation of gold nanorods with bovine serum albumin protein. J. Phys. Chem. C 118, 27459–27464 (2014).

  13. 13.

    Sripriyalakshmi, S., Anjali, C. H., George, P. D., Rajith, B. & Ravindran, A. BSA nanoparticle loaded atorvastatin calcium—a new facet for an old drug. PLoS ONE 9, e86317 (2014).

  14. 14.

    Bronze-Uhle, E. S., Costa, B. C., Ximenes, V. F. & Lisboa-Filho, P. N. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol. Sci. Appl. 10, 11–21 (2017).

  15. 15.

    Yu, Z., Yu, M., Zhang, Z., Hong, G. & Xiong, Q. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res. Lett. 9, 343–343 (2014).

  16. 16.

    Kaniewska, K., Kyriacou, K., Donten, M., Stojek, Z. & Karbarz, M. Micro- and nanoelectrode array behavior at regularly sized electrode modified with a thin film of thermoresponsive polymeric gel. Electrochim. Acta 290, 595–604 (2018).

  17. 17.

    Guo, J. & Lindner, E. Cyclic voltammograms at coplanar and shallow recessed microdisk electrode arrays: guidelines for design and experiment. Anal. Chem. 81, 130–138 (2008).

  18. 18.

    Ordeig, O., del Campo, J., Muñoz, F. X., Banks, C. E. & Compton, R. G. Electroanalysis utilizing amperometric microdisk electrode arrays. Electroanalysis 19, 1973–1986 (2007).

  19. 19.

    Moretto, L. M. & Kalcher, K. Environmental Analysis by Electrochemical Sensors and Biosensors (Springer, 2014).

  20. 20.

    Brewer, S. H., Glomm, W. R., Johnson, M. C., Knag, M. K. & Franzen, S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21, 9303–9307 (2005).

  21. 21.

    Siddiqui, S., Arumugam, P. U., Chen, H., Li, J. & Meyyappan, M. Characterization of carbon nanofiber electrode arrays using electrochemical impedance spectroscopy: effect of scaling down electrode size. ACS Nano 4, 955–961 (2010).

  22. 22.

    Patel, J. et al. Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions. Anal. Chem. 85, 11610–11618 (2013).

  23. 23.

    Jachimska, B., Tokarczyk, K., Łapczyńska, M., Puciul-Malinowska, A. & Zapotoczny, S. Structure of bovine serum albumin adsorbed on silica investigated by quartz crystal microbalance. Colloids Surf. A 489, 163–172 (2016).

  24. 24.

    Villoutreix, B. O., Griffin, J. H. & Getzoff, E. D. A structural model for the prostate disease marker, human prostate‐specific antigen. Protein Sci. 3, 2033–2044 (1994).

  25. 25.

    Ma, X. et al. A biocompatible and biodegradable protein hydrogel with green and red autofluorescence: preparation, characterization and in vivo biodegradation tracking and modeling. Sci. Rep. 6, 19370 (2016).

  26. 26.

    Migneault, I., Dartiguenave, C., Bertrand, M. J. & Waldron, K. C. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37, 790–802 (2004).

  27. 27.

    Johnson, T. J. A. in Biocatalyst Design for Stability and Specificity, Vol. 516 (eds Himmel, M. E. & Georgiou, G.) 283–295 (American Chemical Society, 1993).

  28. 28.

    Phan, H. T. M., Bartelt-Hunt, S., Rodenhausen, K. B., Schubert, M. & Bartz, J. C. Investigation of bovine serum albumin (BSA) attachment onto self-assembled monolayers (SAMs) using combinatorial quartz crystal microbalance with dissipation (QCM-D) and spectroscopic ellipsometry (SE). PLoS ONE 10, e0141282 (2015).

  29. 29.

    Fanjul-Bolado, P., González-García, M. B., Costa-García, A. J. A. & Chemistry, B. Amperometric detection in TMB/HRP-based assays. Anal. Bioanal. Chem. 382, 297–302 (2005).

  30. 30.

    Gülseren, İ., Güzey, D., Bruce, B. D. & Weiss, J. Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrason. Sonochem. 14, 173–183 (2007).

  31. 31.

    Zhao, X., Lu, D., Hao, F. & Liu, R. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity. J. Hazard. Mater. 292, 98–107 (2015).

  32. 32.

    Kopac, T., Bozgeyik, K. & Flahaut, E. Adsorption and interactions of the bovine serum albumin-double walled carbon nanotube system. J. Mol. Liq. 252, 1–8 (2018).

  33. 33.

    Li, L., Lin, R., He, H., Jiang, L. & Gao, M. Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin. Spectrochim. Acta A 105, 45–51 (2013).

  34. 34.

    Sekar, G., Pamela, S. B. E., Mukherjee, A. & Chandrasekaran, N. Spectroscopic studies of CNT induced fibrillar structures of BSA, haemoglobin and lysozyme. Adv. Sci. Eng. Med. 9, 19–26 (2017).

  35. 35.

    Bhattacharya, M., Jain, N. & Mukhopadhyay, S. Insights into the mechanism of aggregation and fibril formation from bovine serum albumin. J. Phys. Chem. B 115, 4195–4205 (2011).

  36. 36.

    Bansal, P. & Ardell, A. J. Average nearest-neighbor distances between uniformly distributed finite particles. Metallography 5, 97–111 (1972).

  37. 37.

    Hwang, S. et al. CMOS microelectrode array for electrochemical lab-on-a-chip applications. IEEE Sens. J. 9, 609–615 (2009).

  38. 38.

    Wang, X., Cohen, L., Wang, J. & Walt, D. R. Competitive immunoassays for the detection of small molecules using single molecule arrays. J. Am. Chem. Soc. 140, 18132–18139 (2018).

  39. 39.

    Randviir, E. P. & Banks, C. E. Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods 5, 1098–1115 (2013).

Download references

Acknowledgements

This research was supported by funding from the Wyss Institute for Biologically Inspired Engineering (to D.E.I.), Defense Advanced Research Projects Agency under Cooperative Agreement (no. W911NF-12-2-0036, to D.E.I.), the Institute for Basic Science (no. IBS-R020-D1) and by a gift from the KeepSmilin4Abbie Foundation. This work was performed in part at the Center for Nanoscale Systems of Harvard University, a member of the National Nanotechnology Coordinated Infrastructure Network, which is supported by the National Science Foundation under NSF award no. 1541959.

Author information

Conception and experimental design were performed by J.S.R., P.J., O.Y.F.H. and D.E.I. Experiments were carried out by J.S.R. and P.J. Validation and reproducibility were performed by P.J and O.Y.F.H. Data analysis was carried out by J.S.R., P.J., O.Y.F.H. and D.E.I. All authors discussed the results and contributed to writing the manuscript.

Correspondence to Donald E. Ingber.

Ethics declarations

Competing interests

The authors are listed as inventors on patents describing this technology.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–9, Tables 1 and 2 and refs. 1–8.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sabaté del Río, J., Henry, O.Y.F., Jolly, P. et al. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat. Nanotechnol. 14, 1143–1149 (2019) doi:10.1038/s41565-019-0566-z

Download citation

Further reading