Letter | Published:

Gate-based high fidelity spin readout in a CMOS device


The engineering of a compact qubit unit cell that embeds all quantum functionalities is mandatory for large-scale integration. In addition, these functionalities should present the lowest error rate possible to successfully implement quantum error correction protocols1. Electron spins in silicon quantum dots are particularly promising because of their high control fidelity2,3,4,5 and their potential compatibility with complementary metal-oxide-semiconductor industrial platforms6,7. However, an efficient and scalable spin readout scheme is still missing. Here we demonstrate a high fidelity and robust spin readout based on gate reflectometry in a complementary metal-oxide-semiconductor device that consists of a qubit dot and an ancillary dot coupled to an electron reservoir. This scalable method allows us to read out a spin in a single-shot manner with an average fidelity above 98% for a 0.5 ms integration time. To achieve such a fidelity, we combine radio-frequency gate reflectometry with a latched spin blockade mechanism that requires electron exchange between the ancillary dot and the reservoir. We show that the demonstrated high readout fidelity is fully preserved up to 0.5 K. This result holds particular relevance for the future cointegration of spin qubits and classical control electronics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Journal peer review information: Nature Nanotechnology thanks Karl Petersson and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Fowler, A. G. Two-dimensional color-code quantum computation. Phys. Rev. A 83, 042310 (2011).

  2. 2.

    Veldhorst, M., Eenink, H. G. J., Yang, C. H. & Dzurak, A. S. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun. 8, 1766 (2017).

  3. 3.

    Zajac, D. M. et al. Resonantly driven CNOT gate for electron spins. Science 359, 439–442 (2018).

  4. 4.

    Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

  5. 5.

    Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9. Nat. Nanotechnol. 13, 102–106 (2018).

  6. 6.

    Maurand, R. et al. A CMOS silicon spin qubit. Nat. Commun. 7, 13575 (2016).

  7. 7.

    Li, R. et al. A crossbar network for silicon quantum dot qubits. Sci. Adv. 4, eaar3960 (2018).

  8. 8.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324.

  9. 9.

    Thalineau, R. et al. A few-electron quadruple quantum dot in a closed loop. Appl. Phys. Lett. 101, 103102 (2012).

  10. 10.

    Flentje, H. et al. A linear triple quantum dot system in isolated configuration. Appl. Phys. Lett. 110, 233101 (2017).

  11. 11.

    Mukhopadhyay, U., Dehollain, J. P., Reichl, C., Wegscheider, W. & Vandersypen, L. M. K. A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings. Appl. Phys. Lett. 112, 183505 (2018).

  12. 12.

    Mortemousque, P. A. et al. Coherent control of individual electron spins in a two dimensional array of quantum dots. Preprint at https://arxiv.org/abs/1808.06180 (2018).

  13. 13.

    Batude, P. et al. 3D Sequential integration: application-driven technological achievements and guidelines. In 2017 IEEE International Electron Devices Meeting 311 (IEEE, 2017).

  14. 14.

    Hutin, L., De Franceschi, S., Meunier, T. & Vinet, M. Quantum device with spin qubits. US provisional patent 15967778 (2018).

  15. 15.

    Larrieu, G. & Han, X.-L. Vertical nanowire array-based field effect transistors for ultimate scaling. Nanoscale 5, 2437–2441 (2013).

  16. 16.

    Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

  17. 17.

    Ono, K., Austing, D., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

  18. 18.

    Barthel, C., Reilly, D. J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Rapid single-shot measurement of a singlet-triplet qubit. Phys. Rev. Lett. 103, 160503 (2009).

  19. 19.

    Petersson, K. et al. Charge and spin state readout of a double quantum dot coupled to a resonator. Nano Lett. 10, 2789–2793 (2010).

  20. 20.

    Colless, J. I. et al. Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. Phys. Rev. Lett. 110, 046805 (2013).

  21. 21.

    Gonzalez-Zalba, M. F., Barraud, S., Ferguson, A. J. & Betz, A. C. Probing the limits of gate-based charge sensing. Nat. Commun. 6, 6084 (2015).

  22. 22.

    Urdampilleta, M. et al. Charge dynamics and spin blockade in a hybrid double quantum dot in silicon. Phys. Rev. X 5, 031024 (2015).

  23. 23.

    House, M. G. et al. High-sensitivity charge detection with a single-lead quantum dot for scalable quantum computation. Phys. Rev. Appl. 6, 044016 (2016).

  24. 24.

    Hofheinz, M. et al. Simple and controlled single electron transistor based on doping modulation in silicon nanowires. Appl. Phys. Lett. 89, 143504 (2006).

  25. 25.

    Nakajima, T. et al. Robust single-shot spin measurement with 99.5% fidelity in a quantum dot array. Phys. Rev. Lett. 119, 017701 (2017).

  26. 26.

    Fogarty, M. A. et al. Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet–triplet readout. Nat. Commun. 9, 4370 (2018).

  27. 27.

    Harvey-Collard, P. et al. High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism. Phys. Rev. X 8, 021046 (2018).

  28. 28.

    Yang, C. et al. Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting. Nat. Commun. 4, 2069 (2013).

  29. 29.

    Macklin, C. et al. A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

  30. 30.

    Maisi, V. F. et al. Spin-orbit coupling at the level of a single electron. Phys. Rev. Lett. 116, 136803 (2016).

  31. 31.

    West, A. et al. Gate-based single-shot readout of spins in silicon. Nat. Nanotechnol. https://doi.org/10.1038/s41565-019-0400-7 (2019).

  32. 32.

    Pakkiam, P. et al. Single-shot single-gate rf spin readout in silicon. Phys. Rev. X 8, 041032 (2018).

  33. 33.

    Beenakker, C. W. J. Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646 (1991).

  34. 34.

    Petit, L. et al. Spin lifetime and charge noise in hot silicon quantum dot qubits. Phys. Rev. Lett. 121, 076801 (2018).

Download references


We acknowledge technical support from P. Perrier, H. Rodenas, E. Eyraud, D. Lepoittevin, I. Pheng, T. Crozes, L. Del Rey, D. Dufeu, J. Jarreau, C. Hoarau and C. Guttin. The European Union’s Horizon 2020 research and innovation programme supports M.U. through a Marie Sklodowska Curie fellowship (ODESI project). E.C. and C.S. acknowledge the Agence Nationale de la Recherche under the programme ‘Investissements d’avenir' (ANR-15-IDEX-02). D.J.N. and C.S. acknowledge the GreQuE doctoral programmes (grant agreement no. 754303). The device fabrication is funded through the Mosquito project (grant agreement no. 688539). This work is supported by the Agence Nationale de la Recherche through the CMOSQSPIN and the CODAQ projects (ANR-17-CE24-0009 and ANR-16-ACHN-0029).

Author information

M.U. and T.M. conceived and designed the experiment. M.U., D.J.N., E.C. and T.M. performed the experiment and analysed the data. L.H., S.B. and M.V. designed the MOS devices and managed the fabrication process. M.U. and T.M. wrote the manuscript with input from all the authors.

Competing interests

The authors declare no competing interests.

Correspondence to Matias Urdampilleta or Tristan Meunier.

Supplementary information

Supplementary Information

Supplementary Figures 1–6

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: A CMOS device probed by gate-based RF reflectometry.
Fig. 2: Single-shot spin readout.
Fig. 3: Spin readout error analysis.
Fig. 4: Temperature dependence of the singlet readout fidelity (FS).