Review Article | Published:

Magnetic 2D materials and heterostructures

Abstract

The family of two-dimensional (2D) materials grows day by day, hugely expanding the scope of possible phenomena to be explored in two dimensions, as well as the possible van der Waals (vdW) heterostructures that one can create. Such 2D materials currently cover a vast range of properties. Until recently, this family has been missing one crucial member: 2D magnets. The situation has changed over the past 2 years with the introduction of a variety of atomically thin magnetic crystals. Here we will discuss the difference between magnetic states in 2D materials and in bulk crystals and present an overview of the 2D magnets that have been explored recently. We will focus on the case of the two most studied systems—semiconducting CrI3 and metallic Fe3GeTe2—and illustrate the physical phenomena that have been observed. Special attention will be given to the range of new van der Waals heterostructures that became possible with the appearance of 2D magnets, offering new perspectives in this rapidly expanding field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  2. 2.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

  3. 3.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

  4. 4.

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

  5. 5.

    McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mat. 27, 612–620 (2015).

  6. 6.

    Lebegue, S., Bjorkman, T., Klintenberg, M., Nieminen, R. M. & Eriksson, O. Two-dimensional materials from data filtering and ab initio calculations. Phys. Rev. X 3, 031002 (2013).

  7. 7.

    Cheon, G. et al. Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett. 17, 1915–1923 (2017).

  8. 8.

    Ashton, M., Paul, J., Sinnott, S. B. & Hennig, R. G. Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys. Rev. Lett. 118, 106101 (2017).

  9. 9.

    Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

  10. 10.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  11. 11.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  12. 12.

    Novoselov, K. S. Nobel Lecture: Graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011).

  13. 13.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  14. 14.

    Park, J. G. Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene? J. Phys. Condens. Matter 28, 301001 (2016).

  15. 15.

    de Jongh, L. J. Magnetic Properties of Layered Transition Metal Compounds Vol. 9 (Springer, 1990).

  16. 16.

    de Jongh, L. J. & Miedema, A. R. Experiments on simple magnetic model systems. Adv. Phys. 23, 1–260 (1974).

  17. 17.

    Sachs, B., Wehling, T. O., Novoselov, K. S., Lichtenstein, A. I. & Katsnelson, M. I. Ferromagnetic two-dimensional crystals: single layers of K2CuF4. Phys. Rev. B 88, 201402 (2013).

  18. 18.

    Ma, Y. D. et al. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6, 1695–1701 (2012).

  19. 19.

    Sivadas, N., Daniels, M. W., Swendsen, R. H., Okamoto, S. & Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91, 235425 (2015).

  20. 20.

    Liu, J. Y., Sun, Q., Kawazoe, Y. & Jena, P. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys. Chem. Chem. Phys. 18, 8777–8784 (2016).

  21. 21.

    Chittari, B. L. et al. Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys. Rev. B 94, 184428 (2016).

  22. 22.

    Zhang, W. B., Qu, Q., Zhua, P. & Lam, C. H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C. 3, 12457–12468 (2015).

  23. 23.

    Samarth, N. Magnetism in flatland. Nature 546, 216–218 (2017).

  24. 24.

    Peierls, R. On Ising’s model of ferromagnetism. Proc. Camb. Philos. Soc. 32, 477–481 (1936).

  25. 25.

    Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in the one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

  26. 26.

    Hohenberg, P. C. Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–3863 (1967).

  27. 27.

    Heisenberg, W. On the theory of ferromagnetism. Z. Phys. 49, 619–636 (1928).

  28. 28.

    Onsager, L. Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–149 (1944).

  29. 29.

    Lenz, W. Beiträge zum Verständnis der magnetischen Eigenschaften in festen Körpern. Phys. Z. 21, 613–615 (1920).

  30. 30.

    Ising, E. Report on the theory of ferromagnetism. Z. Phys. 31, 253–258 (1925).

  31. 31.

    Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group 1. Classical systems. Sov. Phys. JETP-USSR 32, 493–500 (1971).

  32. 32.

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase-transitions in 2 dimensional systems. J. Phys. C. 6, 1181–1203 (1973).

  33. 33.

    Kerkmann, D., Wolf, J. A., Pescia, D., Woike, T. & Grunberg, P. Spin-waves and two-dimensional magnetism in the Co-monolayer on Cu(100). Solid State Commun. 72, 963–966 (1989).

  34. 34.

    Vaz, C. A. F., Bland, J. A. C. & Lauhoff, G. Magnetism in ultrathin film structures. Rep. Prog. Phys. 71, 78 (2008).

  35. 35.

    Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

  36. 36.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

  37. 37.

    Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

  38. 38.

    Rau, J. G., Lee, E. K. H. & Kee, H. Y. Generic spin model for the honeycomb iridates beyond the Kitaev limit. Phys. Rev. Lett. 112, 077204 (2014).

  39. 39.

    Kuo, C. T. et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 6, 20904 (2016).

  40. 40.

    Du, K. Z. et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10, 1738–1743 (2016).

  41. 41.

    Lee, J. U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

  42. 42.

    Wang, X. Z. et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 3, 9 (2016).

  43. 43.

    Lin, M. W. et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J. Mater. Chem. C. 4, 315–322 (2016).

  44. 44.

    Brec, R. Review on structural and chemical-properties of transition-metal phosphorus trisulfides MPS3. Solid State Ion. 22, 3–30 (1986).

  45. 45.

    Grasso, V. & Silipigni, L. Low-dimensional materials: the MPX3 family, physical features and potential future applications. Riv. Nuovo Cim. 25, 1–102 (2002).

  46. 46.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

  47. 47.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

  48. 48.

    Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

  49. 49.

    Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

  50. 50.

    Liu, S. S. et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films were grown by molecular beam epitaxy. npj 2D Mater. Appl. 1, 1–7 (2017).

  51. 51.

    O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

  52. 52.

    Lado, J. L. & Fernandez-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).

  53. 53.

    Liu, J., Shi, M. C., Lu, J. W. & Anantram, M. P. Analysis of electrical-field-dependent Dzyaloshinskii–Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer. Phys. Rev. B 97, 054416 (2018).

  54. 54.

    Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

  55. 55.

    Fisher, M. E. & Barber, M. N. Scaling theory for finite-size effects in critical region. Phys. Rev. Lett. 28, 1516–1519 (1972).

  56. 56.

    Ritchie, D. S. & Fisher, M. E. Finite-size and surface effects in Heisenberg films. Phys. Rev. B 7, 480–494 (1973).

  57. 57.

    Zhang, R. J. & Willis, R. F. Thickness-dependent Curie temperatures of ultrathin magnetic films: effect of the range of spin–spin interactions. Phys. Rev. Lett. 86, 2665–2668 (2001).

  58. 58.

    Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

  59. 59.

    Tan, C. et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 9, 1554 (2018).

  60. 60.

    Stoner, E. C. Atomic moments in ferromagnetic metals and alloys with non-ferromagnetic elements. Philos. Mag. 15, 1018–1034 (1933).

  61. 61.

    Wang, H., Eyert, V. & Schwingenschlogl, U. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3. J. Phys. Cond. Matter 23, 116003 (2011).

  62. 62.

    Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

  63. 63.

    McGuire, M. A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).

  64. 64.

    Dillon, J. F. & Olson, C. E. Magnetization, resonance, and optical properties of the ferromagnet CrI3. J. Appl. Phys. 36, 1259–1260 (1965).

  65. 65.

    Dillon, J. F. & Remeika, J. P. Diffraction of light by domain structure in ferromagnetic CrBr3. J. Appl. Phys. 34, 637–640 (1963).

  66. 66.

    Dillon, J. F. Ferromagnetic resonance in CrBr3. J. Appl. Phys. 33, 1191 (1962).

  67. 67.

    Grant, P. M. & Street, G. B. Optical properties of the chromium trihalides in the region 1–11 eV. Bull. Am. Phys. Soc. II 13 (1968).

  68. 68.

    Pollini, I. & Spinolo, G. Intrinsic optical properties of CrCl3. Phys. Status Solidi 41, 691–701 (1970).

  69. 69.

    Bermudez, V. M. & McClure, D. S. Spectroscopic studies of the two-dimensional magnetic insulators chromium trichloride and chromium tribromide—II. J. Phys. Chem. Solids 40, 149–173 (1979).

  70. 70.

    Nosenzo, L., Samoggia, G. & Pollini, I. Effect of magnetic ordering on the optical properties of transition-metal halides: NiCl2, NiBr2, CrCl3, and CrBr3. Phys. Rev. B 29, 3607–3616 (1984).

  71. 71.

    Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).

  72. 72.

    Jang, S. W., Jeong, M. Y., Yoon, H., Ryee, S. & Han, M. J. Microscopic understanding of magnetic interactions in bilayer CrI3. Preprint at https://arxiv.org/pdf/1809.01388.pdf (2018).

  73. 73.

    Jiang, P. et al. Stacking tunable interlayer magnetism in bilayer CrI3. Preprint at https://arxiv.org/abs/1806.09274 (2018).

  74. 74.

    Soriano, D., Cardoso, C. & Fernández-Rossier, J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Preprint at https://arxiv.org/abs/1807.00357 (2018).

  75. 75.

    Sivadas, N., Okamoto, S., Xu, X. D., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

  76. 76.

    Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single spin microscopy. Preprint at https://arxiv.org/abs/1902.01406 (2019).

  77. 77.

    Wang, Y. H. et al. Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2. Phys. Rev. B 96, 134428 (2017).

  78. 78.

    Yi, J. Y. et al. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2. 2D Mater. 4, 011005 (2017).

  79. 79.

    May, A. F., Calder, S., Cantoni, C., Cao, H. B. & McGuire, M. A. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3–xGeTe2. Phys. Rev. B 93, 014411 (2016).

  80. 80.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

  81. 81.

    Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

  82. 82.

    Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4, 158–161 (2009).

  83. 83.

    Wang, W. G., Li, M. G., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).

  84. 84.

    Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

  85. 85.

    Heron, J. T. et al. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).

  86. 86.

    Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756–761 (2010).

  87. 87.

    Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

  88. 88.

    Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

  89. 89.

    Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

  90. 90.

    Wang, Z. et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18, 4303–4308 (2018).

  91. 91.

    Vdovin, E. E. et al. Phonon-assisted resonant tunneling of electrons in graphene-boron nitride transistors. Phys. Rev. Lett. 116, 186603 (2016).

  92. 92.

    Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).

  93. 93.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, eaar3617 (2018).

  94. 94.

    Kim, H. H. et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 18, 4885–4890 (2018).

  95. 95.

    Song, T. C. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

  96. 96.

    Jiang, S., Li, L., Wang, Z., Shan, J. & Mak, K. F. Spin transistor built on 2D van der Waals heterostructures. Preprint at https://arxiv.org/abs/1807.04898 (2018).

  97. 97.

    Song, T. C. et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 19, 915–920 (2019).

  98. 98.

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

  99. 99.

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

  100. 100.

    Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

  101. 101.

    Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).

  102. 102.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

  103. 103.

    Mayorga-Martinez, C. C. et al. Layered metal thiophosphite materials: magnetic, electrochemical, and electronic properties. ACS Appl. Mater. Interfaces 9, 12563–12573 (2017).

  104. 104.

    Wildes, A. R., Simonet, V., Ressouche, E., Ballou, R. & McIntyre, G. J. The magnetic properties and structure of the quasi-two-dimensional antiferromagnet CoPS3. J. Phys. Condens. Matter 29, 455801 (2017).

  105. 105.

    Kinyanjui, M. K., Koester, J., Boucher, F., Wildes, A. & Kaiser, U. Spectroscopic properties of a freestanding MnPS3 single layer. Phys. Rev. B 98, 035417 (2018).

  106. 106.

    Long, G. et al. Isolation and characterization of few-layer manganese thiophosphite. ACS Nano 11, 11330–11336 (2017).

  107. 107.

    Gao, Y. et al. Bias-switchable negative and positive photoconductivity in 2D FePS3 ultraviolet photodetectors. Nanotechnology 29, 244001 (2018).

  108. 108.

    Abe, R. Some remarks on perturbation theory and phase transition with an application to anisotropic Ising model. Prog. Theor. Phys. 44, 339–347 (1970).

  109. 109.

    Hikami, S. & Tsuneto, T. Phase-transition of quasi-two dimensional planar system. Prog. Theor. Phys. 63, 387–401 (1980).

  110. 110.

    Irkhin, V. Y., Katanin, A. A. & Katsnelson, M. I. Self-consistent spin-wave theory of layered Heisenberg magnets. Phys. Rev. B 60, 1082–1099 (1999).

  111. 111.

    Yasuda, C. et al. Neel temperature of quasi-low-dimensional Heisenberg antiferromagnets. Phys. Rev. Lett. 94, 217201 (2005).

  112. 112.

    Weiss, P. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Théor. Appl. 6, 661–690 (1907).

  113. 113.

    Stanley, H. E. Scaling, universality, and renormalization: three pillars of modern critical phenomena. Rev. Mod. Phys. 71, S358–S366 (1999).

  114. 114.

    Pelissetto, A. & Vicari, E. Critical phenomena and renormalization-group theory. Phys. Rep. 368, 549–727 (2002).

  115. 115.

    Alsnielsen, J., Bramwell, S. T., Hutchings, M. T., McIntyre, G. J. & Visser, D. Neutron-scattering investigation of the static critical properties of Rb2CrCl4. J. Phys. Condens. Matter 5, 7871–7892 (1993).

  116. 116.

    Bramwell, S. T. & Holdsworth, P. C. W. Magnetization and universal subcritical behavior in 2-dimensional XY magnets. J. Phys. Condens. Matter 5, L53–L59 (1993).

  117. 117.

    Jiang, S. W., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

  118. 118.

    Shiomi, Y., Takashima, R. & Saitoh, E. Experimental evidence consistent with a magnon Nernst effect in the antiferromagnetic insulator MnPS3. Phys. Rev. B 96, 134425 (2017).

  119. 119.

    Wildes, A. R., Ronnow, H. M., Roessli, B., Harris, M. J. & Godfrey, K. W. Static and dynamic critical properties of the quasi-two-dimensional antiferromagnet MnPS3. Phys. Rev. B 74, 094422 (2006).

  120. 120.

    Kurosawa, K., Saito, S. & Yamaguchi, Y. Neutron-diffraction study on MnPS3 and FePS3. J. Phys. Soc. Jpn 52, 3919–3926 (1983).

  121. 121.

    Leflem, G., Brec, R., Ouvard, G., Louisy, A. & Segransan, P. Magnetic-interactions in the layer compounds MPX3 (M = Mn, Fe, Ni; X = S, Se). J. Phys. Chem. Solids 43, 455–461 (1982).

  122. 122.

    Kim, M. et al. Hall micromagnetometry of individual two-dimensional ferromagnets. Preprint at https://arxiv.org/abs/1902.06988 (2019).

  123. 123.

    Carteaux, V., Brunet, D., Ouvrard, G. & Andre, G. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J. Phys. Condens. Matter 7, 69–87 (1995).

  124. 124.

    Deiseroth, H. J., Aleksandrov, K., Reiner, C., Kienle, L. & Kremer, R. K. Fe3GeTe2 and Ni3GeTe2—two new layered transition-metal compounds: crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur. J. Inorg. Chem. 2006, 1561–1567 (2006).

  125. 125.

    Lancon, D. et al. Magnetic structure and magnon dynamics of the quasi-two-dimensional antiferromagnet FePS3. Phys. Rev. B 94, 214407 (2016).

  126. 126.

    Makimura, C., Sekine, T., Tanokura, Y. & Kurosawa, K. Raman-scattering in the 2-dimensional antiferromagnet MnPSe3. J. Phys. Condens. Matter 5, 623–632 (1993).

  127. 127.

    McGuire, M. A. et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3. Cryst. Phys. Rev. Mater. 1, 014001 (2017).

  128. 128.

    Kerr, J. XLIII: On rotation of the plane of polarization by reflection from the pole of a magnet. Lond. Edinb. Dublin Philos. Mag. J. Sci. 3, 321–343 (1877).

Download references

Acknowledgements

We acknowledge discussions with (in alphabetical order): I. Gutiérrez-Lezama, H. Henck, G. Long, N. Ubrig and Z. Wang. This work was supported by the EU Graphene Flagship Program (K.S.N. and A.F.M.), European Research Council Synergy grant Hetero2D (K.S.N.), the Royal Society, the Engineering and Physical Research Council (EPSRC UK, grant number EP/N010345/1, K.S.N), US Army Research Office (W911NF-16-1-0279, K.S.N. and M.K.), Swiss National Science Foundation Ambizione grant program (M.G.) and Division II (A.F.M.).

Author information

Competing interests

The authors declare no competing interests.

Correspondence to K. S. Novoselov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Role of spin dimensionality and evolution of Tc.
Fig. 2: Magneto-optical Kerr effect for thin films of CrI3.
Fig. 3: Doping and gate control of layered magnets.
Fig. 4: Heterostructures with layered magnetic materials.