Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic 2D materials and heterostructures

Abstract

The family of two-dimensional (2D) materials grows day by day, hugely expanding the scope of possible phenomena to be explored in two dimensions, as well as the possible van der Waals (vdW) heterostructures that one can create. Such 2D materials currently cover a vast range of properties. Until recently, this family has been missing one crucial member: 2D magnets. The situation has changed over the past 2 years with the introduction of a variety of atomically thin magnetic crystals. Here we will discuss the difference between magnetic states in 2D materials and in bulk crystals and present an overview of the 2D magnets that have been explored recently. We will focus on the case of the two most studied systems—semiconducting CrI3 and metallic Fe3GeTe2—and illustrate the physical phenomena that have been observed. Special attention will be given to the range of new van der Waals heterostructures that became possible with the appearance of 2D magnets, offering new perspectives in this rapidly expanding field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Role of spin dimensionality and evolution of Tc.
Fig. 2: Magneto-optical Kerr effect for thin films of CrI3.
Fig. 3: Doping and gate control of layered magnets.
Fig. 4: Heterostructures with layered magnetic materials.

References

  1. 1.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mat. 27, 612–620 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Lebegue, S., Bjorkman, T., Klintenberg, M., Nieminen, R. M. & Eriksson, O. Two-dimensional materials from data filtering and ab initio calculations. Phys. Rev. X 3, 031002 (2013).

    Google Scholar 

  7. 7.

    Cheon, G. et al. Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett. 17, 1915–1923 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Ashton, M., Paul, J., Sinnott, S. B. & Hennig, R. G. Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys. Rev. Lett. 118, 106101 (2017).

    Article  Google Scholar 

  9. 9.

    Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  CAS  Google Scholar 

  12. 12.

    Novoselov, K. S. Nobel Lecture: Graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Park, J. G. Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene? J. Phys. Condens. Matter 28, 301001 (2016).

    Article  CAS  Google Scholar 

  15. 15.

    de Jongh, L. J. Magnetic Properties of Layered Transition Metal Compounds Vol. 9 (Springer, 1990).

  16. 16.

    de Jongh, L. J. & Miedema, A. R. Experiments on simple magnetic model systems. Adv. Phys. 23, 1–260 (1974).

    Article  Google Scholar 

  17. 17.

    Sachs, B., Wehling, T. O., Novoselov, K. S., Lichtenstein, A. I. & Katsnelson, M. I. Ferromagnetic two-dimensional crystals: single layers of K2CuF4. Phys. Rev. B 88, 201402 (2013).

    Article  CAS  Google Scholar 

  18. 18.

    Ma, Y. D. et al. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6, 1695–1701 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Sivadas, N., Daniels, M. W., Swendsen, R. H., Okamoto, S. & Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91, 235425 (2015).

    Article  CAS  Google Scholar 

  20. 20.

    Liu, J. Y., Sun, Q., Kawazoe, Y. & Jena, P. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys. Chem. Chem. Phys. 18, 8777–8784 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Chittari, B. L. et al. Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys. Rev. B 94, 184428 (2016).

    Article  Google Scholar 

  22. 22.

    Zhang, W. B., Qu, Q., Zhua, P. & Lam, C. H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C. 3, 12457–12468 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Samarth, N. Magnetism in flatland. Nature 546, 216–218 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Peierls, R. On Ising’s model of ferromagnetism. Proc. Camb. Philos. Soc. 32, 477–481 (1936).

    Article  Google Scholar 

  25. 25.

    Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in the one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    CAS  Article  Google Scholar 

  26. 26.

    Hohenberg, P. C. Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–3863 (1967).

    CAS  Article  Google Scholar 

  27. 27.

    Heisenberg, W. On the theory of ferromagnetism. Z. Phys. 49, 619–636 (1928).

    CAS  Article  Google Scholar 

  28. 28.

    Onsager, L. Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–149 (1944).

    CAS  Article  Google Scholar 

  29. 29.

    Lenz, W. Beiträge zum Verständnis der magnetischen Eigenschaften in festen Körpern. Phys. Z. 21, 613–615 (1920).

    CAS  Google Scholar 

  30. 30.

    Ising, E. Report on the theory of ferromagnetism. Z. Phys. 31, 253–258 (1925).

    CAS  Article  Google Scholar 

  31. 31.

    Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group 1. Classical systems. Sov. Phys. JETP-USSR 32, 493–500 (1971).

    Google Scholar 

  32. 32.

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase-transitions in 2 dimensional systems. J. Phys. C. 6, 1181–1203 (1973).

    CAS  Article  Google Scholar 

  33. 33.

    Kerkmann, D., Wolf, J. A., Pescia, D., Woike, T. & Grunberg, P. Spin-waves and two-dimensional magnetism in the Co-monolayer on Cu(100). Solid State Commun. 72, 963–966 (1989).

    CAS  Article  Google Scholar 

  34. 34.

    Vaz, C. A. F., Bland, J. A. C. & Lauhoff, G. Magnetism in ultrathin film structures. Rep. Prog. Phys. 71, 78 (2008).

    Article  CAS  Google Scholar 

  35. 35.

    Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    CAS  Article  Google Scholar 

  36. 36.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    CAS  Article  Google Scholar 

  37. 37.

    Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    CAS  Article  Google Scholar 

  38. 38.

    Rau, J. G., Lee, E. K. H. & Kee, H. Y. Generic spin model for the honeycomb iridates beyond the Kitaev limit. Phys. Rev. Lett. 112, 077204 (2014).

    Article  CAS  Google Scholar 

  39. 39.

    Kuo, C. T. et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 6, 20904 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    Du, K. Z. et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10, 1738–1743 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Lee, J. U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Wang, X. Z. et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 3, 9 (2016).

    Google Scholar 

  43. 43.

    Lin, M. W. et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J. Mater. Chem. C. 4, 315–322 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    Brec, R. Review on structural and chemical-properties of transition-metal phosphorus trisulfides MPS3. Solid State Ion. 22, 3–30 (1986).

    CAS  Article  Google Scholar 

  45. 45.

    Grasso, V. & Silipigni, L. Low-dimensional materials: the MPX3 family, physical features and potential future applications. Riv. Nuovo Cim. 25, 1–102 (2002).

    CAS  Google Scholar 

  46. 46.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  Article  Google Scholar 

  48. 48.

    Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    CAS  Article  Google Scholar 

  49. 49.

    Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    CAS  Article  Google Scholar 

  50. 50.

    Liu, S. S. et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films were grown by molecular beam epitaxy. npj 2D Mater. Appl. 1, 1–7 (2017).

    Article  Google Scholar 

  51. 51.

    O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

    Article  CAS  Google Scholar 

  52. 52.

    Lado, J. L. & Fernandez-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).

    Article  CAS  Google Scholar 

  53. 53.

    Liu, J., Shi, M. C., Lu, J. W. & Anantram, M. P. Analysis of electrical-field-dependent Dzyaloshinskii–Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer. Phys. Rev. B 97, 054416 (2018).

    CAS  Article  Google Scholar 

  54. 54.

    Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    CAS  Article  Google Scholar 

  55. 55.

    Fisher, M. E. & Barber, M. N. Scaling theory for finite-size effects in critical region. Phys. Rev. Lett. 28, 1516–1519 (1972).

    Article  Google Scholar 

  56. 56.

    Ritchie, D. S. & Fisher, M. E. Finite-size and surface effects in Heisenberg films. Phys. Rev. B 7, 480–494 (1973).

    Article  Google Scholar 

  57. 57.

    Zhang, R. J. & Willis, R. F. Thickness-dependent Curie temperatures of ultrathin magnetic films: effect of the range of spin–spin interactions. Phys. Rev. Lett. 86, 2665–2668 (2001).

    CAS  Article  Google Scholar 

  58. 58.

    Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    CAS  Article  Google Scholar 

  59. 59.

    Tan, C. et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 9, 1554 (2018).

    Article  CAS  Google Scholar 

  60. 60.

    Stoner, E. C. Atomic moments in ferromagnetic metals and alloys with non-ferromagnetic elements. Philos. Mag. 15, 1018–1034 (1933).

    CAS  Article  Google Scholar 

  61. 61.

    Wang, H., Eyert, V. & Schwingenschlogl, U. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3. J. Phys. Cond. Matter 23, 116003 (2011).

    CAS  Article  Google Scholar 

  62. 62.

    Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  Google Scholar 

  63. 63.

    McGuire, M. A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).

    Article  CAS  Google Scholar 

  64. 64.

    Dillon, J. F. & Olson, C. E. Magnetization, resonance, and optical properties of the ferromagnet CrI3. J. Appl. Phys. 36, 1259–1260 (1965).

    CAS  Article  Google Scholar 

  65. 65.

    Dillon, J. F. & Remeika, J. P. Diffraction of light by domain structure in ferromagnetic CrBr3. J. Appl. Phys. 34, 637–640 (1963).

    CAS  Article  Google Scholar 

  66. 66.

    Dillon, J. F. Ferromagnetic resonance in CrBr3. J. Appl. Phys. 33, 1191 (1962).

    CAS  Article  Google Scholar 

  67. 67.

    Grant, P. M. & Street, G. B. Optical properties of the chromium trihalides in the region 1–11 eV. Bull. Am. Phys. Soc. II 13 (1968).

  68. 68.

    Pollini, I. & Spinolo, G. Intrinsic optical properties of CrCl3. Phys. Status Solidi 41, 691–701 (1970).

    CAS  Article  Google Scholar 

  69. 69.

    Bermudez, V. M. & McClure, D. S. Spectroscopic studies of the two-dimensional magnetic insulators chromium trichloride and chromium tribromide—II. J. Phys. Chem. Solids 40, 149–173 (1979).

    CAS  Article  Google Scholar 

  70. 70.

    Nosenzo, L., Samoggia, G. & Pollini, I. Effect of magnetic ordering on the optical properties of transition-metal halides: NiCl2, NiBr2, CrCl3, and CrBr3. Phys. Rev. B 29, 3607–3616 (1984).

    CAS  Article  Google Scholar 

  71. 71.

    Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).

    Article  CAS  Google Scholar 

  72. 72.

    Jang, S. W., Jeong, M. Y., Yoon, H., Ryee, S. & Han, M. J. Microscopic understanding of magnetic interactions in bilayer CrI3. Preprint at https://arxiv.org/pdf/1809.01388.pdf (2018).

  73. 73.

    Jiang, P. et al. Stacking tunable interlayer magnetism in bilayer CrI3. Preprint at https://arxiv.org/abs/1806.09274 (2018).

  74. 74.

    Soriano, D., Cardoso, C. & Fernández-Rossier, J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Preprint at https://arxiv.org/abs/1807.00357 (2018).

  75. 75.

    Sivadas, N., Okamoto, S., Xu, X. D., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    CAS  Article  Google Scholar 

  76. 76.

    Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single spin microscopy. Preprint at https://arxiv.org/abs/1902.01406 (2019).

  77. 77.

    Wang, Y. H. et al. Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2. Phys. Rev. B 96, 134428 (2017).

    Article  Google Scholar 

  78. 78.

    Yi, J. Y. et al. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2. 2D Mater. 4, 011005 (2017).

    Article  CAS  Google Scholar 

  79. 79.

    May, A. F., Calder, S., Cantoni, C., Cao, H. B. & McGuire, M. A. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3–xGeTe2. Phys. Rev. B 93, 014411 (2016).

    Article  CAS  Google Scholar 

  80. 80.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    CAS  Article  Google Scholar 

  81. 81.

    Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    CAS  Article  Google Scholar 

  82. 82.

    Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4, 158–161 (2009).

    CAS  Article  Google Scholar 

  83. 83.

    Wang, W. G., Li, M. G., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).

    CAS  Article  Google Scholar 

  84. 84.

    Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    CAS  Article  Google Scholar 

  85. 85.

    Heron, J. T. et al. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).

    CAS  Article  Google Scholar 

  86. 86.

    Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756–761 (2010).

    CAS  Article  Google Scholar 

  87. 87.

    Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    CAS  Article  Google Scholar 

  88. 88.

    Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    CAS  Article  Google Scholar 

  89. 89.

    Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

    Article  Google Scholar 

  90. 90.

    Wang, Z. et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18, 4303–4308 (2018).

    CAS  Article  Google Scholar 

  91. 91.

    Vdovin, E. E. et al. Phonon-assisted resonant tunneling of electrons in graphene-boron nitride transistors. Phys. Rev. Lett. 116, 186603 (2016).

    CAS  Article  Google Scholar 

  92. 92.

    Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).

    Article  Google Scholar 

  93. 93.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, eaar3617 (2018).

    Article  CAS  Google Scholar 

  94. 94.

    Kim, H. H. et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 18, 4885–4890 (2018).

    CAS  Article  Google Scholar 

  95. 95.

    Song, T. C. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    CAS  Article  Google Scholar 

  96. 96.

    Jiang, S., Li, L., Wang, Z., Shan, J. & Mak, K. F. Spin transistor built on 2D van der Waals heterostructures. Preprint at https://arxiv.org/abs/1807.04898 (2018).

  97. 97.

    Song, T. C. et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 19, 915–920 (2019).

    Article  CAS  Google Scholar 

  98. 98.

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    CAS  Article  Google Scholar 

  99. 99.

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    CAS  Article  Google Scholar 

  100. 100.

    Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Article  Google Scholar 

  101. 101.

    Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).

    CAS  Article  Google Scholar 

  102. 102.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

    CAS  Article  Google Scholar 

  103. 103.

    Mayorga-Martinez, C. C. et al. Layered metal thiophosphite materials: magnetic, electrochemical, and electronic properties. ACS Appl. Mater. Interfaces 9, 12563–12573 (2017).

    CAS  Article  Google Scholar 

  104. 104.

    Wildes, A. R., Simonet, V., Ressouche, E., Ballou, R. & McIntyre, G. J. The magnetic properties and structure of the quasi-two-dimensional antiferromagnet CoPS3. J. Phys. Condens. Matter 29, 455801 (2017).

    CAS  Article  Google Scholar 

  105. 105.

    Kinyanjui, M. K., Koester, J., Boucher, F., Wildes, A. & Kaiser, U. Spectroscopic properties of a freestanding MnPS3 single layer. Phys. Rev. B 98, 035417 (2018).

    CAS  Article  Google Scholar 

  106. 106.

    Long, G. et al. Isolation and characterization of few-layer manganese thiophosphite. ACS Nano 11, 11330–11336 (2017).

    CAS  Article  Google Scholar 

  107. 107.

    Gao, Y. et al. Bias-switchable negative and positive photoconductivity in 2D FePS3 ultraviolet photodetectors. Nanotechnology 29, 244001 (2018).

    Article  CAS  Google Scholar 

  108. 108.

    Abe, R. Some remarks on perturbation theory and phase transition with an application to anisotropic Ising model. Prog. Theor. Phys. 44, 339–347 (1970).

    CAS  Article  Google Scholar 

  109. 109.

    Hikami, S. & Tsuneto, T. Phase-transition of quasi-two dimensional planar system. Prog. Theor. Phys. 63, 387–401 (1980).

    CAS  Article  Google Scholar 

  110. 110.

    Irkhin, V. Y., Katanin, A. A. & Katsnelson, M. I. Self-consistent spin-wave theory of layered Heisenberg magnets. Phys. Rev. B 60, 1082–1099 (1999).

    CAS  Article  Google Scholar 

  111. 111.

    Yasuda, C. et al. Neel temperature of quasi-low-dimensional Heisenberg antiferromagnets. Phys. Rev. Lett. 94, 217201 (2005).

    CAS  Article  Google Scholar 

  112. 112.

    Weiss, P. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Théor. Appl. 6, 661–690 (1907).

    Article  Google Scholar 

  113. 113.

    Stanley, H. E. Scaling, universality, and renormalization: three pillars of modern critical phenomena. Rev. Mod. Phys. 71, S358–S366 (1999).

    CAS  Article  Google Scholar 

  114. 114.

    Pelissetto, A. & Vicari, E. Critical phenomena and renormalization-group theory. Phys. Rep. 368, 549–727 (2002).

    CAS  Article  Google Scholar 

  115. 115.

    Alsnielsen, J., Bramwell, S. T., Hutchings, M. T., McIntyre, G. J. & Visser, D. Neutron-scattering investigation of the static critical properties of Rb2CrCl4. J. Phys. Condens. Matter 5, 7871–7892 (1993).

    CAS  Article  Google Scholar 

  116. 116.

    Bramwell, S. T. & Holdsworth, P. C. W. Magnetization and universal subcritical behavior in 2-dimensional XY magnets. J. Phys. Condens. Matter 5, L53–L59 (1993).

    Article  Google Scholar 

  117. 117.

    Jiang, S. W., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    CAS  Article  Google Scholar 

  118. 118.

    Shiomi, Y., Takashima, R. & Saitoh, E. Experimental evidence consistent with a magnon Nernst effect in the antiferromagnetic insulator MnPS3. Phys. Rev. B 96, 134425 (2017).

    Article  Google Scholar 

  119. 119.

    Wildes, A. R., Ronnow, H. M., Roessli, B., Harris, M. J. & Godfrey, K. W. Static and dynamic critical properties of the quasi-two-dimensional antiferromagnet MnPS3. Phys. Rev. B 74, 094422 (2006).

    Article  CAS  Google Scholar 

  120. 120.

    Kurosawa, K., Saito, S. & Yamaguchi, Y. Neutron-diffraction study on MnPS3 and FePS3. J. Phys. Soc. Jpn 52, 3919–3926 (1983).

    CAS  Article  Google Scholar 

  121. 121.

    Leflem, G., Brec, R., Ouvard, G., Louisy, A. & Segransan, P. Magnetic-interactions in the layer compounds MPX3 (M = Mn, Fe, Ni; X = S, Se). J. Phys. Chem. Solids 43, 455–461 (1982).

    CAS  Article  Google Scholar 

  122. 122.

    Kim, M. et al. Hall micromagnetometry of individual two-dimensional ferromagnets. Preprint at https://arxiv.org/abs/1902.06988 (2019).

  123. 123.

    Carteaux, V., Brunet, D., Ouvrard, G. & Andre, G. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J. Phys. Condens. Matter 7, 69–87 (1995).

    CAS  Article  Google Scholar 

  124. 124.

    Deiseroth, H. J., Aleksandrov, K., Reiner, C., Kienle, L. & Kremer, R. K. Fe3GeTe2 and Ni3GeTe2—two new layered transition-metal compounds: crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur. J. Inorg. Chem. 2006, 1561–1567 (2006).

    Article  CAS  Google Scholar 

  125. 125.

    Lancon, D. et al. Magnetic structure and magnon dynamics of the quasi-two-dimensional antiferromagnet FePS3. Phys. Rev. B 94, 214407 (2016).

    Article  Google Scholar 

  126. 126.

    Makimura, C., Sekine, T., Tanokura, Y. & Kurosawa, K. Raman-scattering in the 2-dimensional antiferromagnet MnPSe3. J. Phys. Condens. Matter 5, 623–632 (1993).

    CAS  Article  Google Scholar 

  127. 127.

    McGuire, M. A. et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3. Cryst. Phys. Rev. Mater. 1, 014001 (2017).

    Article  Google Scholar 

  128. 128.

    Kerr, J. XLIII: On rotation of the plane of polarization by reflection from the pole of a magnet. Lond. Edinb. Dublin Philos. Mag. J. Sci. 3, 321–343 (1877).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with (in alphabetical order): I. Gutiérrez-Lezama, H. Henck, G. Long, N. Ubrig and Z. Wang. This work was supported by the EU Graphene Flagship Program (K.S.N. and A.F.M.), European Research Council Synergy grant Hetero2D (K.S.N.), the Royal Society, the Engineering and Physical Research Council (EPSRC UK, grant number EP/N010345/1, K.S.N), US Army Research Office (W911NF-16-1-0279, K.S.N. and M.K.), Swiss National Science Foundation Ambizione grant program (M.G.) and Division II (A.F.M.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. S. Novoselov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gibertini, M., Koperski, M., Morpurgo, A.F. et al. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019). https://doi.org/10.1038/s41565-019-0438-6

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research