Measurements of quantum systems inevitably involve disturbance in various forms. Within the limits imposed by quantum mechanics, there exists an ideal projective measurement that does not introduce a back action on the measured observable, known as a quantum non-demolition (QND) measurement1,2. Here we demonstrate an all-electrical QND measurement of a single electron spin in a gate-defined quantum dot. We entangle the single spin with a two-electron, singlet–triplet ancilla qubit via the exchange interaction3,4 and then read out the ancilla in a single shot. This procedure realizes a disturbance-free projective measurement of the single spin at a rate two orders of magnitude faster than its relaxation. The QND nature of the measurement protocol5,6 enables enhancement of the overall measurement fidelity by repeating the protocol. We demonstrate a monotonic increase of the fidelity over 100 repetitions against arbitrary input states. Our analysis based on statistical inference is tolerant to the presence of the relaxation and dephasing. We further exemplify the QND character of the measurement by observing spontaneous flips (quantum jumps)7 of a single electron spin. Combined with the high-fidelity control of spin qubits8,9,10,11,12,13, these results will allow for various measurement-based quantum state manipulations including quantum error correction protocols14.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Journal peer review information: Nature Nanotechnology thanks John Morton and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Grangier, P., Levenson, J. A. & Poizat, J. P. Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998).

  2. 2.

    Imoto, N., Haus, H. H. A. & Yamamoto, Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985).

  3. 3.

    Mehl, S. & DiVincenzo, D. P. Simple operation sequences to couple and interchange quantum information between spin qubits of different kinds. Phys. Rev. B 92, 115448 (2015).

  4. 4.

    Noiri, A. et al. A fast quantum interface between different spin qubit encodings. Nat. Commun. 9, 5066 (2018).

  5. 5.

    Lupascu, A. et al. Quantum non-demolition measurement of a superconducting two-level system. Nat. Phys. 3, 119–123 (2007).

  6. 6.

    Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009).

  7. 7.

    Vamivakas, A. et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297–300 (2010).

  8. 8.

    Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

  9. 9.

    Takeda, K. et al. A fault-tolerant addressable spin qubit in a natural silicon quantum dot. Sci. Adv. 2, e1600694 (2016).

  10. 10.

    Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).

  11. 11.

    Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

  12. 12.

    Zajac, D. M. et al. Resonantly driven CNOT gate for electron spins. Science 359, 439–442 (2017).

  13. 13.

    Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

  14. 14.

    Ralph, T. C., Bartlett, S. D., O’Brien, J. L., Pryde, G. J. & Wiseman, H. M. Quantum nondemolition measurements for quantum information. Phys. Rev. A 73, 012113 (2006).

  15. 15.

    Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

  16. 16.

    Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

  17. 17.

    Ristè, D., Bultink, C. C., Lehnert, K. W. & Dicarlo, L. Feedback control of a solid-state qubit using high-fidelity projective measurement. Phys. Rev. Lett. 109, 240502 (2012).

  18. 18.

    Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

  19. 19.

    Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

  20. 20.

    Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

  21. 21.

    Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2017).

  22. 22.

    Samkharadze, N. et al. Strong spin–photon coupling in silicon. Science 359, 1123–1127 (2017).

  23. 23.

    Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

  24. 24.

    Tokura, Y., van der Wiel, W. G., Obata, T. & Tarucha, S. Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett. 96, 47202 (2006).

  25. 25.

    Yoneda, J. et al. Fast electrical control of single electron spins in quantum dots with vanishing influence from nuclear spins. Phys. Rev. Lett. 113, 267601 (2014).

  26. 26.

    Delbecq, M. R. et al. Quantum dephasing in a gated GaAs triple quantum dot due to non-ergodic noise. Phys. Rev. Lett. 116, 046802 (2016).

  27. 27.

    Gambetta, J., Braff, W., Wallraff, A., Girvin, S. & Schoelkopf, R. Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement. Phys. Rev. A 76, 012325 (2007).

  28. 28.

    Reilly, D. J. et al. Measurement of temporal correlations of the Overhauser field in a double quantum dot. Phys. Rev. Lett. 101, 236803 (2008).

  29. 29.

    Eng, K. et al. Isotopically enhanced triple-quantum-dot qubit. Sci. Adv. 1, e1500214 (2015).

  30. 30.

    Martinis, J. M. Qubit metrology for building a fault-tolerant quantum computer. npj Quantum Inf. 1, 15005 (2015).

  31. 31.

    Amasha, S. et al. Electrical control of spin relaxation in a quantum dot. Phys. Rev. Lett. 100, 046803 (2008).

  32. 32.

    Barthel, C. et al. Fast sensing of double-dot charge arrangement and spin state with a radio-frequency sensor quantum dot. Phys. Rev. B 81, 161308(R) (2010).

  33. 33.

    Taylor, J. et al. Relaxation, dephasing and quantum control of electron spins in double quantum dots. Phys. Rev. B 76, 035315 (2007).

Download references


The authors thank N. Imoto for fruitful discussions and A. Gutierrez-Rubio and Y. Kojima for careful reading of the manuscript. The authors also thank the RIKEN CEMS Emergent Matter Science Research Support Team and the Microwave Research Group at Caltech for technical assistance. Part of this work was financially supported by CREST, JST (JPMJCR15N2, JPMJCR1675), the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), JSPS KAKENHI grants nos. 26220710, JP16H02204 and 18H01819, RIKEN Incentive Research Projects and Q-LEAP project initiated by MEXT, Japan. T.O. acknowledges support from JSPS KAKENHI grants nos. 16H00817 and 17H05187, PRESTO (JPMJPR16N3), JST, a Yazaki Memorial Foundation for Science and Technology Research Grant, Advanced Technology Institute Research Grant, a Murata Science Foundation Research Grant, an Izumi Science and Technology Foundation Research Grant, a TEPCO Memorial Foundation Research Grant, The Thermal & Electric Energy Technology Foundation Research Grant, The Telecommunications Advancement Foundation Research Grant, a Futaba Electronics Memorial Foundation Research Grant and an MST Foundation Research Grant. A.D.W. and A.L. acknowledge support from BMBF – Q.Link.X 16KIS0867, TRR160 and DFH/UFA CDFA-05-06.

Author information

Author notes

    • Matthieu R. Delbecq

    Present address: Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France

    • Tomohiro Otsuka

    Present address: Research Institute of Electrical Communication, Tohoku University, Aoba-ku, Sendai, Japan

  1. These authors contributed equally: Takashi Nakajima, Akito Noiri.


  1. Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama, Japan

    • Takashi Nakajima
    • , Akito Noiri
    • , Jun Yoneda
    • , Matthieu R. Delbecq
    • , Peter Stano
    • , Tomohiro Otsuka
    • , Kenta Takeda
    • , Shinichi Amaha
    • , Giles Allison
    • , Daniel Loss
    •  & Seigo Tarucha
  2. Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia

    • Peter Stano
  3. Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo, Japan

    • Peter Stano
    • , Kento Kawasaki
    •  & Seigo Tarucha
  4. JST, PRESTO, Kawaguchi, Saitama, Japan

    • Tomohiro Otsuka
  5. Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany

    • Arne Ludwig
    •  & Andreas D. Wieck
  6. Department of Physics, University of Basel, Basel, Switzerland

    • Daniel Loss


  1. Search for Takashi Nakajima in:

  2. Search for Akito Noiri in:

  3. Search for Jun Yoneda in:

  4. Search for Matthieu R. Delbecq in:

  5. Search for Peter Stano in:

  6. Search for Tomohiro Otsuka in:

  7. Search for Kenta Takeda in:

  8. Search for Shinichi Amaha in:

  9. Search for Giles Allison in:

  10. Search for Kento Kawasaki in:

  11. Search for Arne Ludwig in:

  12. Search for Andreas D. Wieck in:

  13. Search for Daniel Loss in:

  14. Search for Seigo Tarucha in:


T.N., M.R.D. and S.T. conceived and designed the experiments. A.L. and A.D.W. grew the heterostructure. T.N. and A.N. fabricated the device. T.N. and A.N. conducted the experiments with the assistance of K.K. T.N. and A.N. analysed the data and wrote the manuscript with input from J.Y. and P.S. All authors discussed the results and commented on the manuscript. The project was supervised by S.T.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Takashi Nakajima or Seigo Tarucha.

Supplementary information

  1. Supplementary Information

    Supplementary text and Supplementary Figs. 1–4

About this article

Publication history