Gate-based single-shot readout of spins in silicon


Electron spins in silicon quantum dots provide a promising route towards realizing the large number of coupled qubits required for a useful quantum processor1,2,3,4,5,6,7. For the implementation of quantum algorithms and error detection8,9,10, qubit measurements are ideally performed in a single shot, which is presently achieved using on-chip charge sensors, capacitively coupled to the quantum dots11. However, as the number of qubits is increased, this approach becomes impractical due to the footprint and complexity of the charge sensors, combined with the required proximity to the quantum dots12. Alternatively, the spin state can be measured directly by detecting the complex impedance of spin-dependent electron tunnelling between quantum dots13,14,15. This can be achieved using radiofrequency reflectometry on a single gate electrode defining the quantum dot itself15,16,17,18,19, significantly reducing the gate count and architectural complexity, but thus far it has not been possible to achieve single-shot spin readout using this technique. Here, we detect single electron tunnelling in a double quantum dot and demonstrate that gate-based sensing can be used to read out the electron spin state in a single shot, with an average readout fidelity of 73%. The result demonstrates a key step towards the readout of many spin qubits in parallel, using a compact gate design that will be needed for a large-scale semiconductor quantum processor.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Optimized gate layout and dispersive sensing set-up.
Fig. 2: Dispersive charge sensing of the double quantum dot.
Fig. 3: Dispersive spin blockade readout.
Fig. 4: Gate-based single-shot spin readout characterization.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666–670 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Maurand, R. et al. A CMOS silicon spin qubit. Nat. Commun. 7, 13575 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Zajac, D. M. et al. Resonantly driven CNOT gate for electron spins. Science 359, 439–442 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Huang, W. et al. Fidelity benchmarks for two-qubit gates in silicon. Preprint at (2018).

  8. 8.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 1st edn (Cambridge Univ. Press, 2004).

  9. 9.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article  Google Scholar 

  10. 10.

    Jones, C. et al. Logical qubit in a linear array of semiconductor quantum dots. Phys. Rev. X 8, 021058 (2018).

    CAS  Google Scholar 

  11. 11.

    Barthel, C., Reilly, D. J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Rapid single-shot measurement of a singlet-triplet qubit. Phys. Rev. Lett. 103, 160503 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Zajac, D., Hazard, T., Mi, X., Nielsen, E. & Petta, J. Scalable gate architecture for a one-dimensional array of semiconductor spin qubits. Phys. Rev. Appl. 6, 054013 (2016).

    Article  Google Scholar 

  13. 13.

    Petersson, K. D. et al. Charge and spin state readout of a double quantum dot coupled to a resonator. Nano Lett. 10, 2789–2793 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    House, M. G. et al. Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots. Nat. Commun. 6, 8848 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Betz, A. C. et al. Dispersively detected Pauli spin-blockade in a silicon nanowire field-effect transistor. Nano Lett. 15, 4622–4627 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Colless, J. I. et al. Dispersive readout of a few-electron double quantum dot with fast rf gate sensors. Phys. Rev. Lett. 110, 046805 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Gonzalez-Zalba, M. F., Barraud, S., Ferguson, A . J. & Betz, A. C. Probing the limits of gate-based charge sensing. Nat. Commun. 6, 6084 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Rossi, A., Zhao, R., Dzurak, A. S. & Gonzalez-Zalba, M. F. Dispersive readout of a silicon quantum dot with an accumulation-mode gate sensor. Appl. Phys. Lett. 110, 212101 (2017).

    Article  Google Scholar 

  19. 19.

    Ahmed, I. et al. Radio-frequency capacitive gate-based sensing. Phys. Rev. Appl. 10, 014018 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Hill, C. D. et al. A surface code quantum computer in silicon. Sci. Adv. 1, e1500707 (2015).

    Article  Google Scholar 

  21. 21.

    Veldhorst, M., Eenink, H. G. J., Yang, C. H. & Dzurak, A. S. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun. 8, 1766 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. Npj Quantum Inf. 3, 34 (2017).

  23. 23.

    Li, R. et al. A crossbar network for silicon quantum dot qubits. Sci. Adv. 4, eaar3960 (2018).

    Article  Google Scholar 

  24. 24.

    Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    CAS  Article  Google Scholar 

  25. 25.

    Croot, X. G. et al. Gate-sensing charge pockets in the semiconductor qubit environment. Preprint at (2017).

  26. 26.

    Fogarty, M. A. et al. Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet–triplet readout. Nat. Commun. 9, 4370 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Hornibrook, J. M. et al. Frequency multiplexing for readout of spin qubits. Appl. Phys. Lett. 104, 103108 (2014).

    Article  Google Scholar 

  28. 28.

    Schaal, S., Rossi, A., Barraud, S., Morton, J. J. L. & Gonzalez-Zalba, M. F. A CMOS dynamic random access architecture for radio-frequency readout of quantum devices. Preprint at (2018).

  29. 29.

    Pakkiam, P. et al. Single-shot single-gate rf spin readout in silicon. Phys. Rev. X 8, 041032 (2018).

    Google Scholar 

  30. 30.

    Harvey-Collard, P. et al. High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism. Phys. Rev. X 8, 021046 (2018).

    CAS  Google Scholar 

  31. 31.

    Urdampilleta, M. et al. Gate-based high fidelity spin read-out in a CMOS device. Preprint at

  32. 32.

    Zheng, G. et al. Rapid high-fidelity gate-based spin read-out in silicon. Preprint at (2019).

  33. 33.

    Scarlino, P. et al. All-microwave control and dispersive readout of gate-defined quantum dot qubits in circuit quantum electrodynamics. Preprint at (2017).

  34. 34.

    Samkharadze, N. et al. Strong spin–photon coupling in silicon. Science 359, 1123–1127 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Cottet, A., Mora, C. & Kontos, T. Mesoscopic admittance of a double quantum dot. Phys. Rev. B 83, 121311 (2011).

    Article  Google Scholar 

  37. 37.

    Mizuta, R., Otxoa, R. M., Betz, A. C. & Gonzalez-Zalba, M. F. Quantum and tunneling capacitance in charge and spin qubits. Phys. Rev. B 95, 045414 (2017).

    Article  Google Scholar 

Download references


The authors thank M. House and A. Laucht for discussions and C. Escott for feedback on the manuscript. The authors also acknowledge support from the US Army Research Office (W911NF-17-1-0198), the Australian Research Council (CE170100012) and the NSW Node of the Australian National Fabrication Facility. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the US Government. M.F.G.-Z. is supported by the Horizon 2020 programme through grant agreement no. 688539. B.H. acknowledges support from the Netherlands Organisation for Scientific Research (NWO) through a Rubicon Grant. This work was partly supported by the Winton Fund for the Physics of Sustainability.

Author information




A.W., B.H. and A.J. performed the experiments. A.W. designed the device with input from A.R. and M.F.G.-Z. A.W. and F.H. fabricated the device with A.S.D.’s supervision. T.T., C.-H.Y. and A.M. contributed to the preparation of experiments and experimental systems. A.R. and M.F.G.Z. supervised early experiments. A.W., B.H. and A.J. designed the experiments under the supervision of A.S.D., with D.J.R. contributing to the discussion and interpretation of the results. B.H. and A.W. wrote the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Bas Hensen or Andrew S. Dzurak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

West, A., Hensen, B., Jouan, A. et al. Gate-based single-shot readout of spins in silicon. Nat. Nanotechnol. 14, 437–441 (2019).

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research