Letter | Published:

Optical initialization of a single spin-valley in charged WSe2 quantum dots

Nature Nanotechnology (2019) | Download Citation

Abstract

Control and manipulation of single charges and their internal degrees of freedom, such as spin, may enable applications in quantum information technology, spintronics and quantum sensing1,2. Recently, atomically thin semiconductors with a direct bandgap such as group VI-B transition-metal dichalcogenide monolayers have emerged as a platform for valleytronics—the study of the valley degree of freedom of charge carriers to store and control information. They offer optical, magnetic and electrical control of the valley index, which, with the spin, is locked into a robust spin-valley index3,4. However, because recombination lifetimes of photogenerated excitations in transition-metal dichalcogenides are of the order of a few picoseconds, optically generated valley excitons possess similar lifetimes. On the other hand, the valley polarization of free holes has a lifetime of microseconds5,6,7,8,9. Whereas progress has been made in optical control of the valley index in ensembles of charge carriers10,11,12, valley control of individual charges, which is crucial for valleytronics, remains unexplored. Here we provide unambiguous evidence for localized holes with a net spin in optically active WSe2 quantum dots13,14,15,16,17 and we initialize their spin-valley state with the helicity of the excitation laser under small magnetic fields. Under such conditions, we estimate a lower bound of the valley lifetime of a single charge in a quantum dot from the recombination time to be of the order of nanoseconds. Remarkably, neutral quantum dots do not exhibit such spin-valley initialization, which illustrates the role of the excess charge in prolonging the valley lifetime. Our work extends the field of two-dimensional valleytronics to the level of single spin- valleys, with implications for quantum information and sensing applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Journal peer review information: Nature Nanotechnology thanks Ziliang Ye and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Imamoğlu, A. et al. Quantum information processing using quantum dot spins and cavity-QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

  2. 2.

    Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

  3. 3.

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  4. 4.

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

  5. 5.

    Jiang, C. et al. Microsecond dark-exciton valley polarisation memory in two-dimensional heterostructures. Nat. Commun. 9, 753 (2018).

  6. 6.

    Yang, L. et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat. Phys. 11, 830–834 (2015).

  7. 7.

    Dey, P. et al. Gate-controlled spin-valley locking of resident carriers in WSe2 monolayers. Phys. Rev. Lett. 119, 137401 (2017).

  8. 8.

    Kim, J. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 3, e1700518 (2017).

  9. 9.

    Yan, T., Yang, S., Li, D. & Cui, X. Long valley relaxation time of free carriers in monolayer WSe2. Phys. Rev. B 95, 241406 (2017).

  10. 10.

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarisation in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

  11. 11.

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarisation in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

  12. 12.

    Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

  13. 13.

    Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

  14. 14.

    Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

  15. 15.

    Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

  16. 16.

    He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

  17. 17.

    Tonndorf, P. et al. Single-photon emission from localised excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).

  18. 18.

    Branny, A., Kumar, S., Proux, R. & Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).

  19. 19.

    Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).

  20. 20.

    Schwarz, S. et al. Electrically pumped single-defect light emitters in WSe2. 2D Mater. 3, 025038 (2016).

  21. 21.

    Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 11, 141–147 (2015).

  22. 22.

    Stier, A. V., McCreary, K. M., Jonker, B. T., Kono, J. & Crooker, S. A. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 tesla. Nat. Commun. 7, 10643 (2016).

  23. 23.

    Yu, H., Liu, G.-B., Gong, P., Xu, X. & Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun. 5, 3876 (2014).

  24. 24.

    Courtade, E. et al. Charged excitons in monolayer WSe2: experiment and theory. Phys. Rev. B 96, 085302 (2017).

  25. 25.

    Högele, A. et al. Voltage-controlled optics of a quantum dot. Phys. Rev. Lett. 93, 217401 (2004).

  26. 26.

    Chakraborty, C. et al. 3D localised trions in monolayer WSe2 in a charge tuneable van der Waals heterostructure. Nano Lett. 18, 2859–2863 (2018).

  27. 27.

    Regelman, D. V. et al. Optical spectroscopy of single quantum dots at tuneable positive, neutral, and negative charge states. Phys. Rev. B 64, 165301 (2001).

  28. 28.

    Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 11, 148–152 (2015).

  29. 29.

    MacNeill, D. et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 114, 037401 (2015).

  30. 30.

    Li, Y. et al. Valley splitting and polarisation by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett. 113, 266804 (2014).

  31. 31.

    Wu, Y., Tong, Q., Liu, G.-B., Yu, H. & Yao, W. Spin-valley qubit in nanostructures of monolayer semiconductors: optical control and hyperfine interaction. Phys. Rev. B 93, 045313 (2016).

  32. 32.

    Sharma, G., Economou, S. E. & Barnes, E. Interplay of valley polarisation and dynamic nuclear polarisation in 2D transition metal dichalcogenides. Phys. Rev. B 96, 125201 (2017).

  33. 33.

    Atatüre, M., Dreiser, J., Badolato, A. & Imamoğlu, A. Observation of Faraday rotation from a single confined spin. Nat. Phys. 3, 101–106 (2007).

Download references

Acknowledgements

We thank A. Imamoğlu and M. Kroner for many discussions. We also acknowledge technical help from T. Neal and E. Liu. A.S. acknowledges support from Emory University startup funds and the NSF through the EFRI programme (grant number EFMA-1741691). Q.X. gratefully acknowledges strong support from Singapore National Research Foundation via an NRF-ANR joint grant (numbef NRF2017-NRF-ANR002 2D-Chiral) and the Singapore Ministry of Education via an AcRF Tier2 grant (number MOE2017-T2-1-040) and Tier1 grants (RG 113/16 and RG 194/17).

Author information

Author notes

  1. These authors contributed equally: Xin Lu, Xiaotong Chen, Sudipta Dubey.

Affiliations

  1. Department of Physics, Emory University, Atlanta, GA, USA

    • Xin Lu
    • , Xiaotong Chen
    • , Sudipta Dubey
    • , Qiang Yao
    • , Weijie Li
    •  & Ajit Srivastava
  2. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore

    • Xingzhi Wang
    •  & Qihua Xiong
  3. NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore

    • Qihua Xiong

Authors

  1. Search for Xin Lu in:

  2. Search for Xiaotong Chen in:

  3. Search for Sudipta Dubey in:

  4. Search for Qiang Yao in:

  5. Search for Weijie Li in:

  6. Search for Xingzhi Wang in:

  7. Search for Qihua Xiong in:

  8. Search for Ajit Srivastava in:

Contributions

X.L. and A.S. conceived and designed the experiments. X.L., X.C., S.D., Q.Y. and W.L. performed the experiments. X.L. and X.W. prepared the samples. X.L., X.C., S.D., Q.X. and A.S. analysed the data. Q.X. contributed materials. X.L. and A.S. co-wrote the paper.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Xin Lu or Ajit Srivastava.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–16, Supplementary Tables 1,2

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41565-019-0394-1