Modern devices require the tuning of the size, shape and spatial arrangement of nano-objects and their assemblies with nanometre-scale precision, over large-area and sometimes soft substrates. Such stringent requirements are beyond the reach of conventional lithographic techniques or self-assembly approaches. Here, we show nanoscale control over the fluid instabilities of optical thin glass films for the fabrication of self-assembled all-dielectric optical metasurfaces. We show and model the tailoring of the position, shape and size of nano-objects with feature sizes below 100 nm and with interparticle distances down to 10 nm. This approach can generate optical nanostructures over rigid and soft substrates that are more than tens of centimetres in size, with optical performance and resolution on a par with advanced traditional lithography-based processes. To underline the potential of our approach, which reconciles high-performance optical metasurfaces and simple self-assembly fabrication approaches, we demonstrate experimentally and via numerical simulation sharp Fano resonances with a quality factor, Q, as high as 300 in the visible for all-dielectric nanostructures, to realize protein monolayer detection.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 18 February 2019

    In the version of this Article originally published, the volume, article number and year of ref. 32 were incorrect; they should have read 31, 1802348 (2019). This has now been corrected.


  1. 1.

    Nanfang, Y. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

  2. 2.

    Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

  3. 3.

    Elhanan, M. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).

  4. 4.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

  5. 5.

    Saman, J. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016).

  6. 6.

    Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

  7. 7.

    Lan, L. et al. Integrated flexible chalcogenide glass photonic devices. Nat. Photon. 8, 643–649 (2014).

  8. 8.

    Mohammadreza, K. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

  9. 9.

    Rotenberg, N. & Kuipers, L. Mapping nanoscale light fields. Nat. Photon. 8, 919–926 (2014).

  10. 10.

    Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, 2472 (2016).

  11. 11.

    Wang, K. X., Yu, Z., Liu, V., Cui, Y. & Fan, S. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 12, 1616–1619 (2012).

  12. 12.

    Yanik, A. A. et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl Acad. Sci. USA 108, 11784–11789 (2011).

  13. 13.

    Bontempi, N. et al. Highly sensitive biosensors based on all-dielectric nanoresonators. Nanoscale 15, 4972–4980 (2017).

  14. 14.

    Yang, Y., Kravchenko, I., Briggs, D. P. & Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 5, 5753 (2014).

  15. 15.

    Albella, P., Rodrigo, A., Fernando, M. & Maier, A. S. Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies. ACS Photon. 1, 524–529 (2014).

  16. 16.

    Yuanmu, Y. et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 15, 7388–7393 (2015).

  17. 17.

    Liu, S. et al. Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces. Nano Lett. 16, 5426–5432 (2016).

  18. 18.

    Lei, W. et al. Nonlinear wavefront control with all-dielectric metasurfaces. Nano Lett. 18, 3978–3984 (2018).

  19. 19.

    Matthew, P. et al. Active tuning of high-Q dielectric metasurfaces. Appl. Phys. Lett. 111, 053102 (2017).

  20. 20.

    Li, L. et al. Monolithically integrated stretchable photonics. Light Sci. Appl. 7, 17138 (2018).

  21. 21.

    She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, 9957 (2018).

  22. 22.

    Zywietz, U., Evlyukhin, A. B., Reinhardt, C. & Chichkov, B. N. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat. Commun. 5, 3402 (2014).

  23. 23.

    Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).

  24. 24.

    Vigderman, L., Khanal, B. P. & Zubarev, E. R. Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv. Mater. 24, 4811–4841 (2012).

  25. 25.

    Flauraud, V. et al. Nanoscale topographical control of capillary assembly of nanoparticles. Nat. Nanotechnol. 12, 73–80 (2017).

  26. 26.

    Lin, Q.-Y. et al. Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science 359, 669–672 (2018).

  27. 27.

    Thompson, C. V. Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399–434 (2012).

  28. 28.

    Jongpil, Y. & Thompson, C. V. Templated solid-state dewetting to controllably produce complex patterns. Adv. Mater. 23, 1567–1571 (2011).

  29. 29.

    Le Bris, A., Maloum, F., Teisseire, J. & Sorin, F. Self-organized ordered silver nanoparticle arrays obtained by solid state dewetting. Appl. Phys. Lett. 105, 203102 (2014).

  30. 30.

    Sharma, A. & Khanna, R. Pattern formation in unstable thin liquid films. Phys. Rev. Lett. 81, 3463 (1998).

  31. 31.

    Deng, D. S., Nave, J.-C., Liang, X., Johnson, S. G. & Fink, Y. Exploration of in-fiber nanostructures from capillary instability. Opt. Exp. 19, 16273–16290 (2011).

  32. 32.

    Yan, W. et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 31, 1802348 (2019).

  33. 33.

    Zha, Y. & Arnold, C. B. Solution-processing of thick chalcogenide–chalcogenide and metal–chalcogenide structures by spin-coating and multilayer lamination. Opt. Mater. Exp. 3, 309–317 (2013).

  34. 34.

    Kohoutek, T., Orava, J., Lindsay Greer, A. & Fudouzi, H. Sub-micrometer soft lithography of a bulk chalcogenide glass. Opt. Exp. 21, 9584–9591 (2013).

  35. 35.

    Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

  36. 36.

    Peiman, H., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

  37. 37.

    Yan, W. et al. Semiconducting nanowire-based optoelectronic fibers. Adv. Mater. 29, 1700681 (2017).

  38. 38.

    Li, Z. et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun. 9, 1481 (2018).

  39. 39.

    Zou, Y. et al. Solution processing and resist-free nanoimprint fabrication of thin film chalcogenide glass devices: Inorganic–organic hybrid photonic integration. Adv. Opt. Mater. 2, 759–764 (2014).

  40. 40.

    de Gennes, P.-G., Brochard-Wyart, F. & Quere, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004).

  41. 41.

    Tverjanovich, A. S. Temperature dependence of the viscosity of chalcogenide glass-forming melts. Glass Phys. Chem. 29, 532–536 (2003).

  42. 42.

    Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016).

  43. 43.

    Style, R. W., Hyland, C., Boltyanskiy, R., Wettlaufer, J. S. & Dufresne, E. R. Surface tension and contact with soft elastic solids. Nat. Commun. 4, 2728 (2013).

  44. 44.

    Liu, J.-G. & Mitsuru, U. High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 19, 8907–8919 (2009).

  45. 45.

    Gupta, T. D., Maurin, I., Rowe, A. C. H. & Gacoin, T. Ultrafine tuning of the metal volume fraction in silver/silicate nanocomposites near the percolation threshold. Nanoscale. 9, 3504–3511 (2017).

  46. 46.

    Brudieu, B. et al. Sol–gel route toward efficient and robust distributed Bragg reflectors for light management applications. Adv. Opt. Mater. 2, 1105–1112 (2014).

  47. 47.

    Babicheva, V. E. & Evlyukhin, A. B. Resonant lattice Kerker effect in metasurfaces with electric and magnetic optical responses. Laser Photon. Rev. 11, 1700132 (2017).

  48. 48.

    Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017).

  49. 49.

    Yesilkoy, F. et al. Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. Light Sci. Appl. 7, 17152 (2018).

Download references


The authors thank F. Smektala and F. Dévésédavy for providing the chalcogenide compositions used in this work. The authors also acknowledge the European Research Council for funding support (ERC starting grant 679211 ‘FLOWTONICS’).

Author information


  1. Photonic Materials and Fiber Devices Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

    • Tapajyoti Das Gupta
    • , Louis Martin-Monier
    • , Wei Yan
    • , Arthur Le Bris
    • , Tùng Nguyen-Dang
    • , Alexis Gérald Page
    • , Kuan-Ting Ho
    • , Yunpeng Qu
    •  & Fabien Sorin
  2. BioNanoPhotonic Systems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

    • Filiz Yesilköy
    •  & Hatice Altug


  1. Search for Tapajyoti Das Gupta in:

  2. Search for Louis Martin-Monier in:

  3. Search for Wei Yan in:

  4. Search for Arthur Le Bris in:

  5. Search for Tùng Nguyen-Dang in:

  6. Search for Alexis Gérald Page in:

  7. Search for Kuan-Ting Ho in:

  8. Search for Filiz Yesilköy in:

  9. Search for Hatice Altug in:

  10. Search for Yunpeng Qu in:

  11. Search for Fabien Sorin in:


F.S. proposed the research direction, supervised the project, and participated in the materials selection and modelling of the dewetting process as well as the optical properties of the nanostructures. T.D.G. participated in fabrication, optical experiments, and their corresponding simulations and modelling. L.M.-M. participated in the modelling of the dewetting process. A.L.B. initiated the project and conducted initial experiments on sample fabrication and optical property measurements. T.D.G., L.M.-M., W.Y., T.N.-D. and A.G.P. participated in SEM characterization. W.Y. carried out the corresponding TEM characterization. A.G.P. characterized experimentally the variation of characteristic dewetting time constant with normalized viscosity. T.D.G., F.Y. and H.A. participated in the protein monolayer experiment and bulk index sensing. K.-T.H. produced a master semester project on biosensing. T.D.G., T.N. and Y.Q. performed the stretchable optomechanical experiment. T.D.G., L.M.-M. and F.S. wrote the manuscript. All authors gave final consent to the manuscript.

Competing interests

The authors declare no competing interests

Corresponding author

Correspondence to Fabien Sorin.

Supplementary information

  1. Supplementary information

    Supplementary Figures 1–14; Supplementary Sections 1–16.

About this article

Publication history