Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet

Abstract

In the presence of a magnetic field, the flow of charged particles in a conductor is deflected from the direction of the applied force, which gives rise to the ordinary Hall effect. Analogously, moving skyrmions with non-zero topological charges and finite fictitious magnetic fields exhibit the skyrmion Hall effect, which is detrimental for applications such as skyrmion racetrack memory. It was predicted that the skyrmion Hall effect vanishes for antiferromagnetic skyrmions because their fictitious magnetic field, proportional to net spin density, is zero. Here we investigate the current-driven transverse elongation of pinned ferrimagnetic bubbles. We estimate the skyrmion Hall effect from the angle between the current and the bubble elongation directions. The angle and, hence, the skyrmion Hall effect vanishes at the angular momentum compensation temperature where the net spin density vanishes. Furthermore, our study establishes a direct connection between the fictitious magnetic field and the spin density.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Determination of TA and device structure.
Fig. 2: Determination of the current-driven elongation of pinned magnetic bubbles at 343 K, that is, above TA.
Fig. 3: Current-driven elongation of magnetic bubble as a function of T.
Fig. 4: Theoretical and numerical results for current-driven elongation of a pinned ferrimagnet bubble.

Similar content being viewed by others

Data availability

All the data are available in the main text or the Supplementary Information.

References

  1. Skyrme, T. H. A non-linear field theory. Proc. R. Soc. Lond. A 260, 127–138 (1961).

    Article  CAS  Google Scholar 

  2. Brey, L., Fertig, H. A., Cote, R. & MacDonald, A. H. Skyrme crystal in a two-dimensional electron gas. Phys. Rev. Lett. 75, 2562 (1995).

    Article  CAS  Google Scholar 

  3. Durrer, R., Kunz, M. & Melchiorri, A. Cosmic structure formation with topological defects. Phys. Rep. 364, 1–81 (2002).

    Article  CAS  Google Scholar 

  4. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  Google Scholar 

  5. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  6. Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2016).

    Article  CAS  Google Scholar 

  7. Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2016).

    Article  Google Scholar 

  8. Chen, G. Spin-orbitronics: skyrmion Hall effect. Nat. Phys. 13, 112–113 (2017).

    Article  CAS  Google Scholar 

  9. Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230 (1973).

    Article  Google Scholar 

  10. Tretiakov, O. A., Clarke, D., Chern, G.-W., Bazaliy, Ya. B. & Tchernyshyov, O. Dynamics of domain walls in magnetic nanostrips. Phys. Rev. Lett. 100, 127204 (2008).

    Article  CAS  Google Scholar 

  11. Tveten, E. G., Qaiumzadeh, A., Tretiakov, O. A. & Brataas, A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 110, 127208 (2013).

    Article  Google Scholar 

  12. Barker, J. & Tretiakov, O. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016).

    Article  Google Scholar 

  13. Zhang, X., Zhou, Y. & Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 7, 10293 (2016).

    Article  CAS  Google Scholar 

  14. Kim, S. K., Lee, K.-J. & Tserkovnyak, Y. Self-focusing skyrmion racetracks in ferrimagnets. Phys. Rev. B 95, 140404(R) (2017).

    Article  Google Scholar 

  15. Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648 (2010).

    Article  CAS  Google Scholar 

  16. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

    Article  CAS  Google Scholar 

  17. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013).

    Article  CAS  Google Scholar 

  18. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article  CAS  Google Scholar 

  19. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article  CAS  Google Scholar 

  20. Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    Article  CAS  Google Scholar 

  21. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article  CAS  Google Scholar 

  22. Hrabec, A. et al. Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017).

    Article  CAS  Google Scholar 

  23. Woo, S. et al. Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films. Nat. Commun. 9, 959 (2018).

    Article  Google Scholar 

  24. Kim, K.-J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1192 (2017).

    Article  CAS  Google Scholar 

  25. Caretta, L. et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).

    Article  CAS  Google Scholar 

  26. Siddiqui, S. A., Han, J., Finley, J. T., Ross, C. A. & Liu, L. Current-induced domain wall motion in a compensated ferrimagnet. Phys. Rev. Lett. 121, 057701 (2018).

    Article  Google Scholar 

  27. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  28. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  29. Tserkovnyak, Y. & Bender, S. A. Spin Hall phenomenology of magnetic dynamics. Phys. Rev. B 90, 014428 (2014).

    Article  Google Scholar 

  30. Gomonay, O., Jungwirth, T. & Sinova, J. High antiferromagnetic domain wall velocity induced by Néel spin–orbit torques. Phys. Rev. Lett. 117, 017202 (2016).

  31. Shiino, T. et al. Antiferromagnetic domain wall motion driven by spin–orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

    Article  Google Scholar 

  32. Jin, C., Song, C., Wang, J. & Liu, Q. Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect. Appl. Phys. Lett. 109, 182404 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the JSPS KAKENHI (grant nos 15H05702, 26103002 and 26103004), Collaborative Research Program of the Institute for Chemical Research, Kyoto University, and R&D project for the ICT Key Technology of MEXT from the Japan Society for the Promotion of Science (JSPS). This work was partly supported by the Cooperative Research Project Program of the Research Institute of Electrical Communication, Tohoku University. D.-H.K. was supported as an Overseas Researcher under the Postdoctoral Fellowship of JSPS (grant no. P16314). D.-K.L., S.-H.O. and K.-J.L. were supported by the National Research Foundation of Korea (grant no. 2017R1A2B2006119), Samsung Research Funding Center of Samsung Electronics under project no. SRFCMA1702-02 and the KIST Institutional Program (project no. 2V05750). S.K.K. and Y.T. were supported by the Army Research Office under contract no. W911NF-14-1-0016. D.-Y.K. and S.-B.C. were supported by a National Research Foundations of Korea (NRF) grant funded by the Ministry of Science, ICT and Future Planning of Korea (MSIP) (grant nos //2015R1A2A1A05001698 and 2015M3D1A1070465).

Author information

Authors and Affiliations

Authors

Contributions

K.-J.L., D.-H.K. and T.Ono planned and designed the experiment. Y.F., H.Y. and A.T. prepared the GdFeCo ferrimagnetic films and Y.H. prepared the devices. Y.H., D.-H.K., D.-Y.K. and T.N. carried out the measurement. S.K.K., K.-J.L. and Y.T. provided theory. D.-H.K. and Y.H. performed the analysis of experimental results. D.-K.L., S.-H.O. and K.-J.L. performed the numerical simulation. D.-H.K., K.-J.L., S.K.K., Y.H., S.-B.C. and T.Ono wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Duck-Ho Kim, Kyung-Jin Lee or Teruo Ono.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirata, Y., Kim, DH., Kim, S.K. et al. Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet. Nat. Nanotechnol. 14, 232–236 (2019). https://doi.org/10.1038/s41565-018-0345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0345-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing