Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanomechanical pump–probe measurements of insulating electronic states in a carbon nanotube

Abstract

Transport measurements have been an indispensable tool in studying conducting states of matter. However, there exists a large set of interesting states that are insulating, often due to electronic interactions or topology, and are difficult to probe via transport. Here, through an experiment on carbon nanotubes, we present a new approach capable of measuring insulating electronic states through their back action on nanomechanical motion. We use a mechanical pump–probe scheme, allowing the detection of shifts in both frequency and dissipation rate of mechanical vibrational modes, in an overall insulating system. As an example, we use this method to probe the non-conducting configurations of a double quantum dot, allowing us to observe the theoretically predicted signature of nanomechanical back action resulting from a coherently tunnelling electron. The technique opens a new way for measuring the internal electronic structure of a growing variety of insulating states in one- and two-dimensional systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measurement set-up and transport characterization of carbon NT devices.
Fig. 2: Nanomechanical measurements of conducting states in a single quantum dot configuration.
Fig. 3: Nanomechanical measurements of insulating states in a single quantum dot configuration.
Fig. 4: Time-domain measurement of insulating states in a double quantum dot.
Fig. 5: Coupling between nanomechanics and a coherently-tunnelling electron in a double quantum dot.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon request.

References

  1. Deshpande, V. V. et al. Mott insulating state in ultraclean carbon nanotubes. Science 323, 106–110 (2009).

    Article  CAS  Google Scholar 

  2. Deshpande, V. V. & Bockrath, M. The one-dimensional Wigner crystal in carbon nanotubes. Nat. Phys. 4, 314–318 (2008).

    Article  CAS  Google Scholar 

  3. Pecker, S. et al. Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube. Nat. Phys. 9, 576–581 (2013).

    Article  CAS  Google Scholar 

  4. Shapir, I. et al. Imaging the Wigner crystal of electrons in one dimension. Preprint at https://arxiv.org/abs/1803.08523 (2018).

  5. Varsano, D. et al. Carbon nanotubes as excitonic insulators. Nat. Commun. 8, 1461 (2017).

    Article  Google Scholar 

  6. Chen, C. et al. Modulation of mechanical resonance by chemical potential oscillation in graphene. Nat. Phys. 12, 240–244 (2016).

    Article  CAS  Google Scholar 

  7. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  8. Ash, E. A. & Nicholls, G. Super-resolution aperture scanning microscope. Nature 237, 510–512 (1972).

    Article  CAS  Google Scholar 

  9. Yoo, M. J. Scanning single-electron transistor microscopy: imaging individual charges. Science 276, 579–582 (1997).

    Article  CAS  Google Scholar 

  10. LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

    Article  CAS  Google Scholar 

  11. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  CAS  Google Scholar 

  12. Huttel, A. K. et al. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano. Lett. 9, 2547–2552 (2009).

    Article  CAS  Google Scholar 

  13. Moser, J., Eichler, A., Güttinger, J., Dykman, M. I. & Bachtold, A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotech. 9, 1007–1011 (2014).

    Article  CAS  Google Scholar 

  14. Moser, J. et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotech. 8, 493–496 (2013).

    Article  CAS  Google Scholar 

  15. Benyamini, A., Hamo, A., Kusminskiy, S. V., von Oppen, F. & Ilani, S. Real-space tailoring of the electron–phonon coupling in ultraclean nanotube mechanical resonators. Nat. Phys. 10, 151–156 (2014).

    Article  CAS  Google Scholar 

  16. Schneider, B. H., Singh, V., Venstra, W. J., Meerwaldt, H. B. & Steele, G. A. Observation of decoherence in a carbon nanotube mechanical resonator. Nat. Commun. 5, 5819 (2014).

    Article  CAS  Google Scholar 

  17. Okazaki, Y., Mahboob, I., Onomitsu, K., Sasaki, S. & Yamaguchi, H. Gate-controlled electromechanical backaction induced by a quantum dot. Nat. Commun. 7, 11132 (2016).

    Article  CAS  Google Scholar 

  18. Deng, G. W. et al. Strongly coupled nanotube electromechanical resonators. Nano. Lett. 16, 5456–5462 (2016).

    Article  CAS  Google Scholar 

  19. Ares, N. et al. Resonant optomechanics with a vibrating carbon nanotube and a radio-frequency cavity. Phys. Rev. Lett. 117, 170801 (2016).

    Article  CAS  Google Scholar 

  20. Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003).

    Article  CAS  Google Scholar 

  21. Zhu, J., Brink, M. & McEuen, P. L. Frequency shift imaging of quantum dots with single-electron resolution. Appl. Phys. Lett. 87, 242102 (2005).

    Article  Google Scholar 

  22. Stomp, R. et al. Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy. Phys. Rev. Lett. 94, 056802 (2005).

    Article  Google Scholar 

  23. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    Article  CAS  Google Scholar 

  24. Lassagne, B. et al. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325, 1107–1110 (2009).

    Article  CAS  Google Scholar 

  25. Steele, G. A. et al. Strong coupling between single-electron tunneling and nanomechanical motion. Science 325, 1103–1107 (2009).

    Article  CAS  Google Scholar 

  26. Bennett, S. D., Cockins, L., Miyahara, Y., Grütter, P. & Clerk, A. A. Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys. Rev. Lett. 104, 017203 (2010).

    Article  Google Scholar 

  27. Castellanos-Gomez, A., Meerwaldt, H. B., Venstra, W. J., van der Zant, H. S. J. & Steele, G. A. Strong and tunable mode coupling in carbon nanotube resonators. Phys. Rev. B 86, 041402 (2012).

    Article  Google Scholar 

  28. Gardner, J., Bennett, S. D. & Clerk, A. A. Mechanically probing coherent tunneling in a double quantum dot. Phys. Rev. B 84, 205316 (2011).

    Article  Google Scholar 

  29. Waissman, J. et al. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nat. Nanotech. 8, 569–574 (2013).

    Article  CAS  Google Scholar 

  30. de-Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997).

    Article  CAS  Google Scholar 

  31. Wiel, Wvander & Franceschi, S. De Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002).

    Article  Google Scholar 

  32. Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    Article  CAS  Google Scholar 

  33. Armour, a, Blencowe, M. & Zhang, Y. Classical dynamics of a nanomechanical resonator coupled to a single-electron transistor. Phys. Rev. B 69, 125313 (2004).

    Article  Google Scholar 

  34. Clerk, A. A. & Bennett, S. Quantum nanoelectromechanics with electrons, quasi-particles and Cooper pairs: effective bath descriptions and strong feedback effects. New J. Phys. 7, 238 (2005).

    Article  Google Scholar 

  35. Efroni, Y., Ilani, S. & Berg, E. Topological transitions and fractional charges induced by strain and a magnetic field in carbon nanotubes. Phys. Rev. Lett. 119, 147704 (2017).

    Article  Google Scholar 

  36. Lotfizadeh, N., Senger, M. J., McCulley, D. R., Minot, E. D. & Deshpande, V. V. Sagnac electron interference as a probe of electronic structure. Preprint at https://arxiv.org/abs/1808.01341 (2018).

  37. He, R., Feng, X. L., Roukes, M. L. & Yang, P. Self-transducing silicon nanowire electromechanical systems at room temperature. Nano. Lett. 8, 1756–1761 (2008).

    Article  Google Scholar 

  38. Padhi, B., Setty, C. & Phillips, P. W. Doped twisted bilayer graphene near magic angles: proximity to Wigner crystallization not Mott insulation. Preprint at https://arxiv.org/abs/1804.01101 (2018).

Download references

Acknowledgements

We thank A. Bachtold, F. Pistolesi and F. von Oppen for stimulating discussions and D. Mahalu for the e-beam writing. We further acknowledge support from the Minerva Foundation grant (712290).

Author information

Authors and Affiliations

Authors

Contributions

I.K. performed the experiments and analysed the data. I.K. and S.I. designed the experiments. I.K. and A.A.C. wrote the theoretical model. I.K. performed the numerical simulations. I.K., A.A.C. and S.I. contributed to its theoretical interpretation. I.K. and S.I. wrote the paper.

Corresponding author

Correspondence to Shahal Ilani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary text and supplementary figures 1–7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khivrich, I., Clerk, A.A. & Ilani, S. Nanomechanical pump–probe measurements of insulating electronic states in a carbon nanotube. Nature Nanotech 14, 161–167 (2019). https://doi.org/10.1038/s41565-018-0341-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0341-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing