Abstract

Spintronic devices based on antiferromagnetic (AFM) materials hold the promise of fast switching speeds and robustness against magnetic fields1,2,3. Different device concepts have been predicted4,5 and experimentally demonstrated, such as low-temperature AFM tunnel junctions that operate as spin-valves6, or room-temperature AFM memory, for which either thermal heating in combination with magnetic fields7 or Néel spin–orbit torque8 is used for the information writing process. On the other hand, piezoelectric materials were employed to control magnetism by electric fields in multiferroic heterostructures9,10,11,12, which suppresses Joule heating caused by switching currents and may enable low-energy-consuming electronic devices. Here, we combine the two material classes to explore changes in the resistance of the high-Néel-temperature antiferromagnet MnPt induced by piezoelectric strain. We find two non-volatile resistance states at room temperature and zero electric field that are stable in magnetic fields up to 60 T. Furthermore, the strain-induced resistance switching process is insensitive to magnetic fields. Integration in a tunnel junction can further amplify the electroresistance. The tunnelling anisotropic magnetoresistance reaches ~11.2% at room temperature. Overall, we demonstrate a piezoelectric, strain-controlled AFM memory that is fully operational in strong magnetic fields and has the potential for low-energy and high-density memory applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

  2. 2.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

  3. 3.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

  4. 4.

    Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

  5. 5.

    Gomonay, H. V. & Loktev, V. M. Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B 81, 144427 (2010).

  6. 6.

    Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

  7. 7.

    Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

  8. 8.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

  9. 9.

    Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

  10. 10.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

  11. 11.

    Xu, M. et al. Progresses of magnetoelectric composite films based on PbMg1/3Nb2/3O3-PbTiO3 single-crystal substrates. Acta Phys. Sin 67, 157506 (2018).

  12. 12.

    Feng, Z. X., Yan, H. & Liu, Z. Q. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv. Electron. Mater. https://doi.org/10.1002/aelm.201800466 (2018).

  13. 13.

    Krén, E. et al. Magnetic structures and exchange interactions in the Mn–Pt system. Phys. Rev. 171, 574–585 (1968).

  14. 14.

    Farrow, R. F. C. et al. MnxPt1-x: a new exchange bias material for permalloy. J. Appl. Phys. 81, 4986–4988 (1997).

  15. 15.

    Coey, J. M. D. Magnetism and Magnetic Materials (Cambridge Univ. Press, Cambridge, 2009).

  16. 16.

    Chen, Z. H. et al. Electron accumulation and emergent magnetism in LaMnO3/SrTiO3 heterostructures. Phys. Rev. Lett. 119, 156801 (2017).

  17. 17.

    Umetsu, R. Y., Fukamichi, K. & Sakuma, A. Electrical and magnetic properties, and electronic structures of pseudo-gap-type antiferromagnetic L10-type MnPt alloys. Mater. Trans. 47, 2–10 (2006).

  18. 18.

    Liu, Z. Q. et al. Full electroresistance modulation in a mixed-phase metallic alloy. Phys. Rev. Lett. 116, 097203 (2016).

  19. 19.

    Zhang, S. et al. Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature. Phys. Rev. Lett. 108, 137203 (2012).

  20. 20.

    Yang, L. et al. Bipolar loop-like non-volatile strain in the (001)-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Sci. Rep. 4, 4591 (2014).

  21. 21.

    Wu, T. et al. Domain engineered switchable strain states in ferroelectric (011) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT, x≈0.32) single crystals. J. Appl. Phys. 109, 124101 (2011).

  22. 22.

    Biegalski, M. D., Dörr, K., Kim, D. H. & Christen, H. M. Applying uniform reversible strain to epitaxial oxide films. Appl. Phys. Lett. 96, 151905 (2010).

  23. 23.

    Hochstrat, A., Binek, C., Chen, X. & Kleemann, W. Extrinsic control of the exchange bias. J. Magn. Magn. Mater. 272–276, 325–326 (2004).

  24. 24.

    He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

  25. 25.

    Polisetty, S. et al. Piezoelectric tuning of exchange bias in a BaTiO3/Co/CoO heterostructure. Phys. Rev. B 82, 134419 (2010).

  26. 26.

    Liu, Z. Q. et al. Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias. Adv. Mater. 28, 118–123 (2016).

  27. 27.

    Hama, H., Motomura, R., Shinozaki, T. & Tsunoda, Y. Spin–flip transition of L10-type MnPt alloy single crystal studied by neutron scattering. J. Phys. Condens. Matter 19, 176228 (2007).

  28. 28.

    Liu, Z. Q. et al. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat. Commun. 9, 41 (2018).

  29. 29.

    Lee, Y. et al. Large resistivity modulation in mixed-phase metallic systems. Nat. Commun. 6, 5959 (2015).

  30. 30.

    Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

  31. 31.

    Liu, Z. Q. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).

  32. 32.

    Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

Download references

Acknowledgements

Zhiqi L. acknowledges financial support from the National Natural Science Foundation of China (NSFC; grant numbers 51822101, 51771009 and 11704018). Z.Z. and Zhiqi L. acknowledge financial support from the NSFC on the Science Foundation Ireland–NSFC Partnership Programme (NSFC grant number 51861135104). S.S. and Zikui L. acknowledge financial support from the US Department of Energy (award number DE-FE0031553). M.C. acknowledges support from Science Foundation Ireland contract 12/RC/2278. Z.C. acknowledges the NSFC (number 51802057) and a startup grant from the Harbin Institute of Technology (Shenzhen, China), under project number DD45001017. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US DOE under contract DE-AC02-05CH11231.

Author information

Author notes

  1. These authors contributed equally: Han Yan, Zexin Feng.

Affiliations

  1. School of Materials Science and Engineering, Beihang University, Beijing, China

    • Han Yan
    • , Zexin Feng
    • , Xiaoning Wang
    • , Zexiang Hu
    • , Hui Wang
    • , Hui Hua
    • , Wenkuo Lu
    • , Jingmin Wang
    • , Peixin Qin
    • , Huixin Guo
    • , Xiaorong Zhou
    • , Zhaoguogang Leng
    • , Chengbao Jiang
    • , Michael Coey
    •  & Zhiqi Liu
  2. Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA

    • Shunli Shang
    •  & Zikui Liu
  3. Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China

    • Jinhua Wang
    •  & Zengwei Zhu
  4. School of Physics, Huazhong University of Science and Technology, Wuhan, China

    • Jinhua Wang
    •  & Zengwei Zhu
  5. School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China

    • Zuhuang Chen
  6. Department of Pure and Applied Physics, Trinity College, Dublin, Ireland

    • Michael Coey

Authors

  1. Search for Han Yan in:

  2. Search for Zexin Feng in:

  3. Search for Shunli Shang in:

  4. Search for Xiaoning Wang in:

  5. Search for Zexiang Hu in:

  6. Search for Jinhua Wang in:

  7. Search for Zengwei Zhu in:

  8. Search for Hui Wang in:

  9. Search for Zuhuang Chen in:

  10. Search for Hui Hua in:

  11. Search for Wenkuo Lu in:

  12. Search for Jingmin Wang in:

  13. Search for Peixin Qin in:

  14. Search for Huixin Guo in:

  15. Search for Xiaorong Zhou in:

  16. Search for Zhaoguogang Leng in:

  17. Search for Zikui Liu in:

  18. Search for Chengbao Jiang in:

  19. Search for Michael Coey in:

  20. Search for Zhiqi Liu in:

Contributions

H.Y. and Z.F. performed the sample growth, electrical and magnetic measurements, with assistance from X.W., Z.H., H.H., W.L., Jingmin W., P.Q., H.G., X.Z., Z. Leng and C.J. Zhiqi L. performed the XRD measurements. Z.C. performed the X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements. H.W. performed the TEM measurements. Jinhua W. and Z.Z. performed the high magnetic field measurements. S.S. and Zikui L. performed the theoretical calculations. Zhiqi L. wrote the manuscript, along with H.Y., Z.F., X.W., Z.H. and M.C. All authors discussed the results and commented on the manuscript. Zhiqi L. conceived and led the project.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Zhiqi Liu.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–8

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41565-018-0339-0