Letter | Published:

Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor

Nature Nanotechnologyvolume 14pages137140 (2019) | Download Citation


The realization of the surface code for topological error correction is an essential step towards a universal quantum computer1,2,3. For single-atom qubits in silicon4,5,6,7, the need to control and read out qubits synchronously and in parallel requires the formation of a two-dimensional array of qubits with control electrodes patterned above and below this qubit layer. This vertical three-dimensional device architecture8 requires the ability to pattern dopants in multiple, vertically separated planes of the silicon crystal with nanometre precision interlayer alignment. Additionally, the dopants must not diffuse or segregate during the silicon encapsulation. Critical components of this architecture—such as nanowires9, single-atom transistors4 and single-electron transistors10–have been realized on one atomic plane by patterning phosphorus dopants in silicon using scanning tunnelling microscope hydrogen resist lithography11,12. Here, we extend this to three dimensions and demonstrate single-shot spin read-out with 97.9% measurement fidelity of a phosphorus dopant qubit within a vertically gated single-electron transistor with <5 nm interlayer alignment accuracy. Our strategy ensures the formation of a fully crystalline transistor using just two atomic species: phosphorus and silicon.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Wang, D. S., Fowler, A. G. & Hollenberg, L. C. L. Surface code quantum computing with error rates over 1%. Phys. Rev. A 83, 020302 (2011).

  2. 2.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A. 86, 032324 (2012).

  3. 3.

    Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017).

  4. 4.

    Fuechsle, M. et al. A single-atom transistor. Nat. Nanotech. 7, 242–246 (2012).

  5. 5.

    Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

  6. 6.

    Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

  7. 7.

    Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

  8. 8.

    Hill, C. D. et al. A surface code quantum computer in silicon. Sci. Adv. 1, e1500707 (2015).

  9. 9.

    Weber, B. et al. Ohm’s law survives to the atomic scale. Science 335, 64–67 (2012).

  10. 10.

    Büch, H., Mahapatra, S., Rahman, R., Morello, A. & Simmons, M. Y. Spin readout and addressability of phosphorus-donor clusters in silicon. Nat. Commun. 4, 143–147 (2013).

  11. 11.

    Schofield, S. R. et al. Atomically precise placement of single dopants in Si. Phys. Rev. Lett. 91, 136104 (2003).

  12. 12.

    Rueß, F. J. et al. Realization of atomically controlled dopant devices in silicon. Small 3, 563–567 (2007).

  13. 13.

    Weber, B. et al. Spin blockade and exchange in Coulomb-confined silicon double quantum dots. Nat. Nanotech. 9, 430–435 (2014).

  14. 14.

    McKibbin, S. R., Scappucci, G., Pok, W. & Simmons, M. Y. Epitaxial top-gated atomic-scale silicon wire in a three-dimensional architecture. Nanotechnology 24, 045303 (2013).

  15. 15.

    Rueß, F. J., Goh, K. E. J. & Butcher, M. J. The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures. Nanotechnology 16, 2446–2449 (2005).

  16. 16.

    Yamazaki, K., Fujiwara, A., Takahashi, Y., Namatsu, H. & Kurihara, K. Sub-10-nm overlay accuracy in electron beam lithography for nanometer-scale device fabrication. Jpn. J. Appl. Phys. 37, 6788–6791 (1998).

  17. 17.

    Maile, B. E. et al. Sub-10 nm linewidth and overlay performance achieved with a fine-tuned EBPG-5000 TFE electron beam lithography system. Jpn. J. Appl. Phys. 39, 6836–6842 (2000).

  18. 18.

    McKibbin, S. R., Clarke, W. R. & Simmons, M. Y. Investigating the surface quality and confinement of Si:P δ-layers at different growth temperatures. Physica E 42, 1180–1183 (2010).

  19. 19.

    Goh, K. E. J., Oberbeck, L., Simmons, M. Y., Hamilton, A. R. & Clark, R. G. Effect of encapsulation temperature on Si:P δ-doped layers. Appl. Phys. Lett. 85, 4953 (2004).

  20. 20.

    Lin, D.-S., Ku, T.-S. & Sheu, T.-J. Thermal reactions of phosphine with Si(100): a combined photoemission and scanning-tunneling-microscopy study. Surf. Sci. 424, 7–18 (1999).

  21. 21.

    Esser, M., Zoethout, E., Zandvliet, H. J. W., Wormeester, H. & Poelsema, B. Kinetic growth manipulation of Si(0 0 1) homoepitaxy. Surf. Sci. 552, 35–45 (2004).

  22. 22.

    Mysliveček, J. et al. On the microscopic origin of the kinetic step bunching instability on vicinal Si(001). Surf. Sci. 520, 193–206 (2002).

  23. 23.

    Keizer, J. G., Koelling, S., Koenraad, P. M. & Simmons, M. Y. Suppressing segregation in highly phosphorus doped silicon monolayers. ACS Nano 9, 12537–12541 (2015).

  24. 24.

    Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

  25. 25.

    Watson, T. F., Weber, B., House, M. G., Büch, H. & Simmons, M. Y. High-fidelity rapid initialization and read-out of an electron spin via the single donor D charge state. Phys. Rev. Lett. 115, 166806 (2015).

  26. 26.

    Hsueh, Y.-L. et al. Spin-lattice relaxation times of single donors and donor clusters in silicon. Phys. Rev. Lett. 113, 246406 (2014).

  27. 27.

    Keith, D. et al. Benchmarking high fidelity single-shot readout of semiconductor qubits. Preprint at https://arxiv.org/abs/1811.03630 (2018).

  28. 28.

    McKibbin, S. R., Polley, C. M., Scappucci, G., Keizer, J. G. & Simmons, M. Y. Low resistivity, super-saturation phosphorus-in-silicon monolayer doping. Appl. Phys. Lett. 104, 123502 (2014).

Download references


This paper is dedicated to Mira Koch. This research was conducted by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (project number CE110001027). M.Y.S. acknowledges an ARC Laureate Fellowship.

Author information


  1. Australian Research Council Centre of Excellence for Quantum Computation and Communications Technology, School of Physics, University of New South Wales, Sydney, New South Wales, Australia

    • Matthias Koch
    • , Joris G. Keizer
    • , Prasanna Pakkiam
    • , Daniel Keith
    • , Matthew G. House
    • , Eldad Peretz
    •  & Michelle Y. Simmons


  1. Search for Matthias Koch in:

  2. Search for Joris G. Keizer in:

  3. Search for Prasanna Pakkiam in:

  4. Search for Daniel Keith in:

  5. Search for Matthew G. House in:

  6. Search for Eldad Peretz in:

  7. Search for Michelle Y. Simmons in:


M.K., J.G.K. and M.Y.S. conceived and designed the experiment. M.K., J.G.K., P.P. and E.P. fabricated the devices. M.K. and P.P. obtained all electrical measurements. The data were analysed by M.K. and J.G.K., and discussed critically with all authors. M.K. performed the spin read-out analysis. M.G.H. performed the noise characterization. D.K. calculated the read-out fidelity of the device. The manuscript was written by M.K., J.G.K. and M.Y.S., with input from all other authors. M.Y.S. supervised the project.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Matthias Koch.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–5

About this article

Publication history




Issue Date