Environmental performance of graphene-based 3D macrostructures

Abstract

Three-dimensional macrostructures (3DMs) of graphene and graphene oxide are being developed for fast and efficient removal of contaminants from water and air. The large specific surface area, versatile surface chemistry and exceptional mechanical properties of graphene-based nanosheets enable the formation of robust and high-performance 3DMs such as sponges, membranes, beads and fibres. However, little is known about the relationship between the materials properties of graphene-based 3DMs and their environmental performance. In this Review, we summarize the self-assembly and environmental applications of graphene-based 3DMs in removing contaminants from water and air. We also develop the critical link between the materials properties of 3DMs and their environmental performance, and identify the key parameters that influence their capacities for contaminant removal.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Self-assembly of 2D graphene-based nanosheets into 3DMs.
Fig. 2: 3DMs for contaminant removal from water.
Fig. 3: Graphene-based 3DMs with potential applications in desalination.
Fig. 4: 3DMs for air treatment and antimicrobial applications.
Fig. 5: Engineering the pores of 3DMs.
Fig. 6: Correlation between 3DM properties and their environmental performance.

References

  1. 1.

    Rao, C., Sood, A., Voggu, R. & Subrahmanyam, K. Some novel attributes of graphene. J. Phys. Chem. Lett. 1, 572–580 (2010).

    CAS  Google Scholar 

  2. 2.

    Kim, J., Cote, L. J. & Huang, J. Two dimensional soft material: new faces of graphene oxide. Acc. Chem. Res. 45, 1356–1364 (2012).

    CAS  Google Scholar 

  3. 3.

    Li, D., Müller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 3, 101–105 (2008).

    CAS  Google Scholar 

  4. 4.

    Qi, Y., Xia, T., Li, Y., Duan, L. & Chen, W. Colloidal stability of reduced graphene oxide materials prepared using different reducing agents. Environ. Sci. Nano 3, 1062–1071 (2016).

    CAS  Google Scholar 

  5. 5.

    Qi, Z., Zhang, L. & Chen, W. Transport of graphene oxide nanoparticles in saturated sandy soil. Environ. Sci. Proc. Impacts 16, 2268–2277 (2014).

    CAS  Google Scholar 

  6. 6.

    Xu, Y., Sheng, K., Li, C. & Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010).

    CAS  Google Scholar 

  7. 7.

    Cao, X. et al. Preparation of novel 3D graphene networks for supercapacitor applications. Small 7, 3163–3168 (2011).

    CAS  Google Scholar 

  8. 8.

    Cao, X., Yin, Z. & Zhang, H. Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci. 7, 1850–1865 (2014).

    CAS  Google Scholar 

  9. 9.

    Cao, X. et al. Metal oxide-coated three-dimensional graphene prepared by the use of metal–organic frameworks as precursors. Angew. Chem. 126, 1428–1433 (2014).

    Google Scholar 

  10. 10.

    Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

    CAS  Google Scholar 

  11. 11.

    Cao, X. et al. Three-dimensional graphene network composites for detection of hydrogen peroxide. Small 9, 1703–1707 (2013).

    CAS  Google Scholar 

  12. 12.

    Hu, W. et al. Graphene-based antibacterial paper. ACS Nano 4, 4317–4323 (2010).

    CAS  Google Scholar 

  13. 13.

    Xu, Z. & Gao, C. Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc. Chem. Res. 47, 1267–1276 (2014).

    CAS  Google Scholar 

  14. 14.

    Chen, B. et al. Carbon based sorbents with three dimensional architectures for water remediation. Small 11, 3319–3336 (2015).

    CAS  Google Scholar 

  15. 15.

    Hu, P., Tan, B. & Long, M. Advanced nanoarchitectures of carbon aerogels for multifunctional environmental applications. Nanotechnol. Rev. 5, 23–39 (2016).

    Google Scholar 

  16. 16.

    Shen, Y., Fang, Q. & Chen, B. Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection. Environ. Sci. Technol. 49, 67–84 (2014).

    Google Scholar 

  17. 17.

    Aboutalebi, S. H., Gudarzi, M. M., Zheng, Q. B. & Kim, J. K. Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv. Funct. Mater. 21, 2978–2988 (2011).

    CAS  Google Scholar 

  18. 18.

    Xu, Z. & Gao, C. Aqueous liquid crystals of graphene oxide. ACS Nano 5, 2908–2915 (2011).

    CAS  Google Scholar 

  19. 19.

    Yousefi, N. et al. Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59, 406–417 (2013).

    CAS  Google Scholar 

  20. 20.

    Luo, J. et al. Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5, 8943–8949 (2011).

    CAS  Google Scholar 

  21. 21.

    Kavadiya, S., Raliya, R., Schrock, M. & Biswas, P. Crumpling of graphene oxide through evaporative confinement in nanodroplets produced by electrohydrodynamic aerosolization. J. Nanopart. Res. 19, 43 (2017).

    Google Scholar 

  22. 22.

    Xu, Z., Sun, H., Zhao, X. & Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25, 188–193 (2013).

    CAS  Google Scholar 

  23. 23.

    Bao, C. et al. Graphene oxide beads for fast clean-up of hazardous chemicals. J. Mater. Chem. A 4, 9437–9446 (2016).

    CAS  Google Scholar 

  24. 24.

    Wallace, G. G., Chen, J., Li, D., Moulton, S. E. & Razal, J. M. Nanostructured carbon electrodes. J. Mater. Chem. 20, 3553–3562 (2010).

    CAS  Google Scholar 

  25. 25.

    Narayan, R., Kim, J. E., Kim, J. Y., Lee, K. E. & Kim, S. O. Graphene oxide liquid crystals: discovery, evolution and applications. Adv. Mater. 28, 3045–3068 (2016).

    CAS  Google Scholar 

  26. 26.

    Wang, W.-N., Jiang, Y. & Biswas, P. Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement force relationship. J. Phys. Chem. Lett. 3, 3228–3233 (2012).

    CAS  Google Scholar 

  27. 27.

    Yeh, C.-N., Raidongia, K., Shao, J., Yang, Q.-H. & Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166 (2015).

    CAS  Google Scholar 

  28. 28.

    Chen, Z., Xu, C., Ma, C., Ren, W. & Cheng, H. M. Lightweight and flexible graphene foam composites for high performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013).

    CAS  Google Scholar 

  29. 29.

    Dong, X. et al. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem. Commun. 48, 10660–10662 (2012).

    CAS  Google Scholar 

  30. 30.

    Bong, J. et al. Dynamic graphene filters for selective gas–water–oil separation. Sci. Rep. 5, 14321 (2015).

    CAS  Google Scholar 

  31. 31.

    Jiang, L. & Fan, Z. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6, 1922–1945 (2014).

    CAS  Google Scholar 

  32. 32.

    Nardecchia, S., Carriazo, D., Ferrer, M. L., Gutiérrez, M. C. & del Monte, F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42, 794–830 (2013).

    CAS  Google Scholar 

  33. 33.

    Wu, T. et al. Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance. J. Mater. Chem. A 1, 7612–7621 (2013).

    CAS  Google Scholar 

  34. 34.

    Chen, Y., Chen, L., Bai, H. & Li, L. Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J. Mater. Chem. A 1, 1992–2001 (2013).

    CAS  Google Scholar 

  35. 35.

    Sui, Z.-Y., Cui, Y., Zhu, J.-H. & Han, B.-H. Preparation of three-dimensional graphene oxide–polyethylenimine porous materials as dye and gas adsorbents. ACS Appl. Mater. Interfaces 5, 9172–9179 (2013).

    CAS  Google Scholar 

  36. 36.

    Gao, H., Sun, Y., Zhou, J., Xu, R. & Duan, H. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl. Mater. Interfaces 5, 425–432 (2013).

    CAS  Google Scholar 

  37. 37.

    Jiang, Y., Chowdhury, S. & Balasubramanian, R. Nitrogen-doped graphene hydrogels as potential adsorbents and photocatalysts for environmental remediation. Chem. Eng. J. 327, 751–763 (2017).

    CAS  Google Scholar 

  38. 38.

    Mou, Z. et al. Eosin Y functionalized graphene for photocatalytic hydrogen production from water. Int. J. Hydrogen Energy 36, 8885–8893 (2011).

    CAS  Google Scholar 

  39. 39.

    Ge, J. et al. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotech. 12, 434–440 (2017).

    CAS  Google Scholar 

  40. 40.

    Shafiq, Y. M., Cheong, W. K. & Von Lau, E. Graphene aerogel recovery of heavy crude oil from contaminated sand. J. Environ. Chem. Eng. 5, 1711–1717 (2017).

    Google Scholar 

  41. 41.

    Wan, S., Bi, H. & Sun, L. Graphene and carbon-based nanomaterials as highly efficient adsorbents for oils and organic solvents. Nanotechnol. Rev. 5, 3–22 (2016).

    CAS  Google Scholar 

  42. 42.

    Cao, N. et al. Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chem. Eng. J. 326, 17–28 (2017).

    CAS  Google Scholar 

  43. 43.

    Chen, C., Li, R., Xu, L. & Yan, D. Three-dimensional superhydrophobic porous hybrid monoliths for effective removal of oil droplets from the surface of water. RSC Adv. 4, 17393–17400 (2014).

    CAS  Google Scholar 

  44. 44.

    He, Y. et al. Engineering reduced graphene oxide aerogel produced by effective γ-ray radiation-induced self-assembly and its application for continuous oil–water separation. Ind. Eng. Chem. Res. 55, 3775–3781 (2016).

    CAS  Google Scholar 

  45. 45.

    Li, Y. et al. A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments. Sci. Rep. 7, 46379 (2017).

    Google Scholar 

  46. 46.

    Ji, C. et al. High performance graphene-based foam fabricated by a facile approach for oil absorption. J. Mater. Chem. A 5, 11263–11270 (2017).

    CAS  Google Scholar 

  47. 47.

    Li, R. et al. A facile approach to superhydrophobic and superoleophilic graphene/polymer. J. Mater. Chem. A 2, 3057–3064 (2014).

    CAS  Google Scholar 

  48. 48.

    Li, J. et al. Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J. Mater. Chem. A 2, 2934–2941 (2014).

    CAS  Google Scholar 

  49. 49.

    Bi, H. et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 22, 4421–4425 (2012).

    CAS  Google Scholar 

  50. 50.

    Cong, H.-P., Ren, X.-C., Wang, P. & Yu, S.-H. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6, 2693–2703 (2012).

    CAS  Google Scholar 

  51. 51.

    Lei, Y., Chen, F., Luo, Y. & Zhang, L. Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(vi) removal. J. Mater. Sci. 49, 4236–4245 (2014).

    CAS  Google Scholar 

  52. 52.

    Liu, P., Yan, T., Zhang, J., Shi, L. & Zhang, D. Separation and recovery of heavy metal ions and salty ions from wastewater by 3D graphene-based asymmetric electrodes via capacitive deionization. J. Mater. Chem. A 5, 14748–14757 (2017).

    CAS  Google Scholar 

  53. 53.

    Vilela, D., Parmar, J., Zeng, Y., Zhao, Y. & Sánchez, S. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 16, 2860–2866 (2016).

    CAS  Google Scholar 

  54. 54.

    Li, Y. et al. Removal of Cr(vi) by 3D TiO2–graphene hydrogel via adsorption enriched with photocatalytic reduction. Appl. Catal. B 199, 412–423 (2016).

    CAS  Google Scholar 

  55. 55.

    Duan, L. et al. The oxidation capacity of Mn3O4 nanoparticles is significantly enhanced by anchoring them onto reduced graphene oxide to facilitate regeneration of surface-associated Mn(iii). Water Res. 103, 101–108 (2016).

    CAS  Google Scholar 

  56. 56.

    Liu, A. M., Hidajat, K., Kawi, S. & Zhao, D. Y. A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chem. Commun. 1145–1146 (2000).

  57. 57.

    Liu, J. et al. 3D graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions. J. Mater. Chem. A 4, 1970–1979 (2016).

    CAS  Google Scholar 

  58. 58.

    Liu, G., Jin, W. & Xu, N. Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew. Chem. Int. Ed. 55, 13384–13397 (2016).

    CAS  Google Scholar 

  59. 59.

    Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    CAS  Google Scholar 

  60. 60.

    Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotech. 10, 459–464 (2015).

    CAS  Google Scholar 

  61. 61.

    O’Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).

    Google Scholar 

  62. 62.

    Cohen-Tanugi, D. & Grossman, J. C. Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 14, 6171–6178 (2014).

    CAS  Google Scholar 

  63. 63.

    Heiranian, M., Farimani, A. B. & Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015).

    CAS  Google Scholar 

  64. 64.

    Akbari, A. et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 7, 10891 (2016).

    CAS  Google Scholar 

  65. 65.

    Xu, W. L. et al. Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification. Nano Lett. 17, 2928–2933 (2017).

    CAS  Google Scholar 

  66. 66.

    Nair, R., Wu, H., Jayaram, P., Grigorieva, I. & Geim, A. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    CAS  Google Scholar 

  67. 67.

    Mi, B. Graphene oxide membranes for ionic and molecular sieving. Science 343, 740–742 (2014).

    CAS  Google Scholar 

  68. 68.

    Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotech. 12, 546–550 (2017).

    CAS  Google Scholar 

  69. 69.

    Hung, W.-S. et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem. Mater. 26, 2983–2990 (2014).

    CAS  Google Scholar 

  70. 70.

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Google Scholar 

  71. 71.

    Werber, J. R., Deshmukh, A. & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3, 112–120 (2016).

    CAS  Google Scholar 

  72. 72.

    Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Google Scholar 

  73. 73.

    Finnerty, C., Zhang, L., Sedlak, D. L., Nelson, K. L. & Mi, B. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge. Environ. Sci. Technol. 51, 11701–11709 (2017).

    CAS  Google Scholar 

  74. 74.

    Li, X. et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl Acad. Sci. USA 113, 13953–13958 (2016).

    CAS  Google Scholar 

  75. 75.

    Liu, K. K. et al. Wood–graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces 9, 7675–7681 (2017).

    CAS  Google Scholar 

  76. 76.

    Zhang, P., Li, J., Lv, L., Zhao, Y. & Qu, L. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017).

    CAS  Google Scholar 

  77. 77.

    Dongare, P. D. et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl Acad. Sci. USA 114, 6936–6941 (2017).

    CAS  Google Scholar 

  78. 78.

    Boo, C. & Elimelech, M. Thermal desalination membranes: carbon nanotubes keep up the heat. Nat. Nanotech. 12, 501–503 (2017).

    CAS  Google Scholar 

  79. 79.

    Chowdhury, S. & Balasubramanian, R. Three-dimensional graphene-based macrostructures for sustainable energy applications and climate change mitigation. Prog. Mater. Sci. 90, 224–275 (2017).

    CAS  Google Scholar 

  80. 80.

    dos Santos, T. C. & Ronconi, C. M. Self-assembled 3D mesoporous graphene oxides (MEGOs) as adsorbents and recyclable solids for CO2 and CH4 capture. J. CO2 Util. 20, 292–300 (2017).

    Google Scholar 

  81. 81.

    Yun, S., Lee, H., Lee, W.-E. & Park, H. S. Multiscale textured, ultralight graphene monoliths for enhanced CO2 and SO2 adsorption capacity. Fuel 174, 36–42 (2016).

    CAS  Google Scholar 

  82. 82.

    Liang, J., Cai, Z., Li, L., Guo, L. & Geng, J. Scalable and facile preparation of graphene aerogel for air purification. RSC Adv. 4, 4843–4847 (2014).

    CAS  Google Scholar 

  83. 83.

    Chowdhury, S. & Balasubramanian, R. Three-dimensional graphene-based porous adsorbents for postcombustion CO2 capture. Ind. Eng. Chem. Res. 55, 7906–7916 (2016).

    CAS  Google Scholar 

  84. 84.

    Chowdhury, S. & Balasubramanian, R. Holey graphene frameworks for highly selective post-combustion carbon capture. Sci. Rep. 6, 21537 (2016).

    CAS  Google Scholar 

  85. 85.

    Sui, Z.-Y. et al. Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl. Mater. Interfaces 7, 1431–1438 (2015).

    CAS  Google Scholar 

  86. 86.

    Nie, Y., Wang, W.-N., Jiang, Y., Fortner, J. & Biswas, P. Crumpled reduced graphene oxide-amine-titanium dioxide nanocomposites for simultaneous carbon dioxide adsorption and photoreduction. Catal. Sci. Technol. 6, 6187–6196 (2016).

    CAS  Google Scholar 

  87. 87.

    Wu, J. et al. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 16, 466–470 (2015).

    Google Scholar 

  88. 88.

    Ma, S., Liu, J., Sasaki, K., Lyth, S. M. & Kenis, P. J. Carbon foam decorated with silver nanoparticles for electrochemical CO2 conversion. Energy Technol. 5, 861–863 (2017).

    CAS  Google Scholar 

  89. 89.

    Hou, J., Cheng, H., Takeda, O. & Zhu, H. Three-dimensional bimetal–graphene–semiconductor coaxial nanowire arrays to harness charge flow for the photochemical reduction of carbon dioxide. Angew. Chem. Int. Ed. 127, 8600–8604 (2015).

    Google Scholar 

  90. 90.

    Hao, G.-P. et al. Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties. Energy Environ. Sci. 6, 3740–3747 (2013).

    CAS  Google Scholar 

  91. 91.

    Lin, N., Berton, P., Moraes, C., Rogers, R. & Tufenkji, N. Nanodarts, nanoblades, and nanospikes: mechano-bactericidal nanostructures and where to find them. Adv. Colloid Interface Sci. 252, 55–68 (2017).

    Google Scholar 

  92. 92.

    Lu, X. L. et al. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl Acad. Sci. USA 114, E9793–E9801 (2017).

    CAS  Google Scholar 

  93. 93.

    Li, Y. et al. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl Acad. Sci. USA 110, 12295–12300 (2013).

    CAS  Google Scholar 

  94. 94.

    Perreault, F., Fonseca de Faria, A. & Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44, 5861–5896 (2015).

    CAS  Google Scholar 

  95. 95.

    Zou, X., Zhang, L., Wang, Z. & Luo, Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 138, 2064–2077 (2016).

    CAS  Google Scholar 

  96. 96.

    Liu, S. et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011).

    CAS  Google Scholar 

  97. 97.

    Liu, X. Y. et al. Antioxidant deactivation on graphenic nanocarbon surfaces. Small 7, 2775–2785 (2011).

    CAS  Google Scholar 

  98. 98.

    Wu, L. et al. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling. Langmuir 29, 15174–15181 (2013).

    CAS  Google Scholar 

  99. 99.

    Jayanthi, S. et al. Macroporous three-dimensional graphene oxide foams for dye adsorption and antibacterial applications. RSC Adv. 6, 1231–1242 (2016).

    CAS  Google Scholar 

  100. 100.

    Wang, Y., Zhang, P., Liu, C. F. & Huang, C. Z. A facile and green method to fabricate graphene-based multifunctional hydrogels for miniature-scale water purification. RSC Adv. 3, 9240–9246 (2013).

    CAS  Google Scholar 

  101. 101.

    de Faria, A. F., Perreault, F., Shaulsky, E., Arias Chavez, L. H. & Elimelech, M. Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide–silver nanocomposites. ACS Appl. Mater. Interfaces 7, 12751–12759 (2015).

    Google Scholar 

  102. 102.

    Zhao, J. et al. Graphene oxide-based antibacterial cotton fabrics. Adv. Healthcare Mater. 2, 1259–1266 (2013).

    CAS  Google Scholar 

  103. 103.

    Wang, Y.-W. et al. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interfaces 6, 2791–2798 (2014).

    CAS  Google Scholar 

  104. 104.

    Kanchanapally, R. et al. Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Adv. 5, 18881–18887 (2015).

    CAS  Google Scholar 

  105. 105.

    Yuan, B., Zhu, T., Zhang, Z., Jiang, Z. & Ma, Y. Self-assembly of multilayered functional films based on graphene oxide sheets for controlled release. J. Mater. Chem. 21, 3471–3476 (2011).

    CAS  Google Scholar 

  106. 106.

    Cai, X. et al. Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability. Langmuir 27, 7828–7835 (2011).

    CAS  Google Scholar 

  107. 107.

    Sun, H., Gao, N., Dong, K., Ren, J. & Qu, X. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 8, 6202–6210 (2014).

    CAS  Google Scholar 

  108. 108.

    Jiang, Y. et al. In situ photocatalytic synthesis of Ag nanoparticles (nAg) by crumpled graphene oxide composite membranes for filtration and disinfection applications. Environ. Sci. Technol. 50, 2514–2521 (2016).

    CAS  Google Scholar 

  109. 109.

    Jiang, Y., Wang, W.-N., Biswas, P. & Fortner, J. D. Facile aerosol synthesis and characterization of ternary crumpled graphene–TiO2–magnetite nanocomposites for advanced water treatment. ACS Appl. Mater. Interfaces 6, 11766–11774 (2014).

    CAS  Google Scholar 

  110. 110.

    Wang, Y. & Gilbertson, L. M. Informing rational design of graphene oxide through surface chemistry manipulations: properties governing electrochemical and biological activities. Green Chem. 19, 2826–2838 (2017).

    CAS  Google Scholar 

  111. 111.

    Bai, J. et al. Ultra-light and elastic graphene foams with a hierarchical structure and a high oil absorption capacity. J. Mater. Chem. A 3, 22687–22694 (2015).

    CAS  Google Scholar 

  112. 112.

    Liu, T. et al. The preparation of superhydrophobic graphene/melamine composite sponge applied in treatment of oil pollution. J. Porous Mater. 22, 1573–1580 (2015).

    CAS  Google Scholar 

  113. 113.

    Luo, Y., Jiang, S., Xiao, Q., Chen, C. & Li, B. Highly reusable and superhydrophobic spongy graphene aerogels for efficient oil/water separation. Sci. Rep. 7, 7162 (2017).

    Google Scholar 

  114. 114.

    Zhao, J., Guo, Q., Wang, X., Xie, H. & Chen, Y. Recycle and reusable melamine sponge coated by graphene for highly efficient oil-absorption. Colloids Surf. A 488, 93–99 (2016).

    CAS  Google Scholar 

  115. 115.

    Hu, H., Zhao, Z., Gogotsi, Y. & Qiu, J. Compressible carbon nanotube–graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ. Sci. Technol. Lett. 1, 214–220 (2014).

    CAS  Google Scholar 

  116. 116.

    Liu, T. et al. Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon 100, 456–464 (2016).

    CAS  Google Scholar 

  117. 117.

    He, Y. et al. An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity. J. Hazard. Mater. 260, 796–805 (2013).

    CAS  Google Scholar 

  118. 118.

    Wu, Y. et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nat. Commun. 6, 6141 (2015).

    CAS  Google Scholar 

  119. 119.

    Park, W., Li, X., Mandal, N., Ruan, X. & Chen, Y. P. Compressive mechanical response of graphene foams and their thermal resistance with copper interfaces. APL Mater. 5, 036102 (2017).

    Google Scholar 

  120. 120.

    Maiti, S., Gibson, L. & Ashby, M. Deformation and energy absorption diagrams for cellular solids. Acta Metall. 32, 1963–1975 (1984).

    CAS  Google Scholar 

  121. 121.

    Yang, P.-Y., Ju, S.-P. & Huang, S.-M. Predicted structural and mechanical properties of activated carbon by molecular simulation. Comput. Mater. Sci. 143, 43–54 (2018).

    CAS  Google Scholar 

  122. 122.

    Worsley, M. A., Kucheyev, S. O., Satcher, J. H. Jr, Hamza, A. V. & Baumann, T. F. Mechanically robust and electrically conductive carbon nanotube foams. Appl. Phys. Lett. 94, 073115 (2009).

    Google Scholar 

  123. 123.

    Yousefi, N. et al. Hierarchically porous, ultra-strong reduced graphene oxide–cellulose nanocrystal sponges for exceptional adsorption of water contaminants. Nanoscale 10, 7171–7184 (2018).

    CAS  Google Scholar 

  124. 124.

    Shen, X., Lin, X., Yousefi, N., Jia, J. & Kim, J.-K. Wrinkling in graphene sheets and graphene oxide papers. Carbon 66, 84–92 (2014).

    CAS  Google Scholar 

  125. 125.

    Di Mundo, R. & Palumbo, F. Comments regarding “An essay on contact angle measurements”. Plasma Processes Polym. 8, 14–18 (2011).

    Google Scholar 

  126. 126.

    Hu, H., Zhao, Z., Wan, W., Gogotsi, Y. & Qiu, J. Ultralight and highly compressible graphene aerogels. Adv. Mater. 25, 2219–2223 (2013).

    CAS  Google Scholar 

  127. 127.

    Kim, K. H., Oh, Y. & Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotech. 7, 562–566 (2012).

    CAS  Google Scholar 

  128. 128.

    Kim, K. H., Tsui, M. N. & Islam, M. F. Graphene-coated carbon nanotube aerogels remain superelastic while resisting fatigue and creep over −100 to +500 °C. Chem. Mater. 29, 2748–2755 (2017).

    CAS  Google Scholar 

  129. 129.

    Qiu, L., Liu, J. Z., Chang, S. L., Wu, Y. & Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012).

    Google Scholar 

  130. 130.

    Sha, J. et al. Three-dimensional printed graphene foams. ACS Nano 11, 6860–6867 (2017).

    CAS  Google Scholar 

  131. 131.

    Sun, W. et al. Ultra-low-density GNS/CA composite aerogels with ultra-high specific surface for dye removal. J. Sol-Gel Sci. Technol. 80, 68–76 (2016).

    CAS  Google Scholar 

  132. 132.

    Tang, Z., Shen, S., Zhuang, J. & Wang, X. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem. Int. Ed. Engl. 49, 4603–4607 (2010).

    CAS  Google Scholar 

  133. 133.

    Tsui, M. N., Kim, K. H. & Islam, M. F. Drastically enhancing moduli of graphene-coated carbon nanotube aerogels via densification while retaining temperature-invariant superelasticity and ultrahigh efficiency. ACS Appl. Mater. Interfaces 9, 37954–37961 (2017).

    CAS  Google Scholar 

  134. 134.

    Worsley, M. A. et al. Mechanically robust 3D graphene macroassembly with high surface area. Chem. Commun. 48, 8428–8430 (2012).

    CAS  Google Scholar 

  135. 135.

    Zhang, M., Gao, B., Cao, X. & Yang, L. Synthesis of a multifunctional graphene–carbon nanotube aerogel and its strong adsorption of lead from aqueous solution. RSC Adv. 3, 21099–21105 (2013).

    CAS  Google Scholar 

  136. 136.

    Zhang, X. et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 21, 6494–6497 (2011).

    CAS  Google Scholar 

  137. 137.

    Zhu, C. et al. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015).

    CAS  Google Scholar 

  138. 138.

    Zhang, Q. et al. 3D superelastic graphene aerogel–nanosheet hybrid hierarchical nanostructures as high-performance supercapacitor electrodes. Carbon 127, 449–458 (2018).

    CAS  Google Scholar 

  139. 139.

    Moon, I. K., Yoon, S., Chun, K. Y. & Oh, J. Highly elastic and conductive n‐doped monolithic graphene aerogels for multifunctional applications. Adv. Funct. Mater. 25, 6976–6984 (2015).

    CAS  Google Scholar 

  140. 140.

    Cheng, Y. et al. Highly hydrophobic and ultralight graphene aerogel as high efficiency oil absorbent material. J. Environ. Chem. Eng. 5, 1957–1963 (2017).

    CAS  Google Scholar 

  141. 141.

    Hong, J.-Y., Sohn, E.-H., Park, S. & Park, H. S. Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel. Chem. Eng. J. 269, 229–235 (2015).

    CAS  Google Scholar 

  142. 142.

    Liu, Y. et al. Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl. Mater. Interfaces 5, 10018–10026 (2013).

    CAS  Google Scholar 

  143. 143.

    Zhou, S. et al. One-pot synthesis of robust superhydrophobic, functionalized graphene/polyurethane sponge for effective continuous oil–water separation. Chem. Eng. J. 302, 155–162 (2016).

    CAS  Google Scholar 

  144. 144.

    Zhou, S., Jiang, W., Wang, T. & Lu, Y. Highly hydrophobic, compressible, and magnetic polystyrene/Fe3O4/graphene aerogel composite for oil–water separation. Ind. Eng. Chem. 54, 5460–5467 (2015).

    CAS  Google Scholar 

  145. 145.

    Cheng, C. et al. Biomimetic assembly of polydopamine-layer on graphene: mechanisms, versatile 2D and 3D architectures and pollutant disposal. Chem. Eng. J. 228, 468–481 (2013).

    CAS  Google Scholar 

  146. 146.

    Wan, W. et al. Graphene–carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes. Environ. Sci. Nano 3, 107–113 (2016).

    CAS  Google Scholar 

  147. 147.

    Wan, Y. et al. Facile and scalable production of three-dimensional spherical carbonized bacterial cellulose/graphene nanocomposites with a honeycomb-like surface pattern as potential superior absorbents. J. Mater. Chem. A 3, 24389–24396 (2015).

    CAS  Google Scholar 

  148. 148.

    Xiao, J., Zhang, J., Lv, W., Song, Y. & Zheng, Q. Multifunctional graphene/poly(vinyl alcohol) aerogels: in situ hydrothermal preparation and applications in broad-spectrum adsorption for dyes and oils. Carbon 123, 354–363 (2017).

    CAS  Google Scholar 

  149. 149.

    Xu, L. et al. Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction. J. Mater. Chem. A 3, 7498–7504 (2015).

    CAS  Google Scholar 

  150. 150.

    Carreno, N. L. et al. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles. Nanoscale 7, 17441–17449 (2015).

    CAS  Google Scholar 

  151. 151.

    Liu, F., Chung, S., Oh, G. & Seo, T. S. Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl. Mater. Interfaces 4, 922–927 (2012).

    CAS  Google Scholar 

  152. 152.

    Liu, Y. et al. One-pot synthesis of rice-like TiO2/graphene hydrogels as advanced electrodes for supercapacitors and the resulting aerogels as high-efficiency dye adsorbents. Electrochim. Acta 229, 239–252 (2017).

    CAS  Google Scholar 

  153. 153.

    Luan, V. H., Chung, J. S., Kim, E. J. & Hur, S. H. The molecular level control of three-dimensional graphene oxide hydrogel structure by using various diamines. Chem. Eng. J. 246, 64–70 (2014).

    CAS  Google Scholar 

  154. 154.

    Ma, J., Chen, C. & Yu, F. Self-regenerative and self-enhanced smart graphene/Ag3PO4 hydrogel adsorbent under visible light. New J. Chem. 40, 3208–3215 (2016).

    CAS  Google Scholar 

  155. 155.

    Tiwari, J. N. et al. Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon 56, 173–182 (2013).

    CAS  Google Scholar 

  156. 156.

    Wu, D., Yi, M., Duan, H., Xu, J. & Wang, Q. Tough TiO2–rGO–PDMAA nanocomposite hydrogel via one-pot UV polymerization and reduction for photodegradation of methylene blue. Carbon 108, 394–403 (2016).

    CAS  Google Scholar 

  157. 157.

    Yang, L. et al. One-pot synthesis of multifunctional magnetic N-doped graphene composite for SERS detection, adsorption separation and photocatalytic degradation of Rhodamine 6G. Chem. Eng. J. 327, 694–704 (2017).

    CAS  Google Scholar 

  158. 158.

    Zhang, X., Liu, D., Yang, L., Zhou, L. & You, T. Self-assembled three-dimensional graphene-based materials for dye adsorption and catalysis. J. Mater. Chem. A 3, 10031–10037 (2015).

    CAS  Google Scholar 

  159. 159.

    Zhao, J., Ren, W. & Cheng, H.-M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J. Mater. Chem. 22, 20197–20202 (2012).

    CAS  Google Scholar 

  160. 160.

    Chen, G., Liu, Y., Liu, F. & Zhang, X. Fabrication of three-dimensional graphene foam with high electrical conductivity and large adsorption capability. Appl. Surf. Sci. 311, 808–815 (2014).

    CAS  Google Scholar 

  161. 161.

    Dong, Z., Zhang, F., Wang, D., Liu, X. & Jin, J. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J. Solid State Chem. 224, 88–93 (2015).

    CAS  Google Scholar 

  162. 162.

    Fang, Q., Zhou, X., Deng, W. & Liu, Z. Hydroxyl-containing organic molecule induced self-assembly of porous graphene monoliths with high structural stability and recycle performance for heavy metal removal. Chem. Eng. J. 308, 1001–1009 (2017).

    CAS  Google Scholar 

  163. 163.

    Han, Z. et al. Strengthening of graphene aerogels with tunable density and high adsorption capacity towards Pb2+. Sci. Rep. 4, 5025 (2014).

    CAS  Google Scholar 

  164. 164.

    Henriques, B. et al. Optimized graphene oxide foam with enhanced performance and high selectivity for mercury removal from water. J. Hazard. Mater. 301, 453–461 (2016).

    CAS  Google Scholar 

  165. 165.

    Lei, Y., Chen, F., Luo, Y. & Zhang, L. Synthesis of three-dimensional graphene oxide foam for the removal of heavy metal ions. Chem. Phys. Lett. 593, 122–127 (2014).

    CAS  Google Scholar 

  166. 166.

    Li, W. et al. High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions. Sci. Rep. 3, 2125 (2013).

    Google Scholar 

  167. 167.

    Hoai, N. T., Sang, N. N. & Hoang, T. D. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal. Mater. Sci. Eng. B 216, 10–15 (2017).

    CAS  Google Scholar 

  168. 168.

    Kabiri, S., Tran, D. N. H., Altalhi, T. & Losic, D. Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal. Carbon 80, 523–533 (2014).

    CAS  Google Scholar 

  169. 169.

    Oribayo, O., Feng, X., Rempel, G. L. & Pan, Q. Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chem. Eng. J. 323, 191–202 (2017).

    CAS  Google Scholar 

  170. 170.

    Ren, R. P., Li, W. & Lv, Y. K. A robust, superhydrophobic graphene aerogel as a recyclable sorbent for oils and organic solvents at various temperatures. J. Colloid Interface Sci. 500, 63–68 (2017).

    CAS  Google Scholar 

  171. 171.

    Shi, H. et al. Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties. Nanoscale 6, 13748–13753 (2014).

    CAS  Google Scholar 

  172. 172.

    Song, S., Yang, H., Su, C., Jiang, Z. & Lu, Z. Ultrasonic-microwave assisted synthesis of stable reduced graphene oxide modified melamine foam with superhydrophobicity and high oil adsorption capacities. Chem. Eng. J. 306, 504–511 (2016).

    CAS  Google Scholar 

  173. 173.

    Wu, R. et al. One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents. Appl. Surf. Sci. 362, 56–62 (2016).

    CAS  Google Scholar 

  174. 174.

    Yang, S. et al. Graphene foam with hierarchical structures for the removal of organic pollutants from water. RSC Adv. 6, 4889–4898 (2016).

    CAS  Google Scholar 

  175. 175.

    Zhai, P. et al. Tuning surface wettability and adhesivity of a nitrogen-doped graphene foam after water vapor treatment for efficient oil removal. Adv. Mater. Interfaces 2, 1500243 (2015).

    Google Scholar 

  176. 176.

    Zhang, L. et al. Thiolated graphene-based superhydrophobic sponges for oil–water separation. Chem. Eng. J. 316, 736–743 (2017).

    CAS  Google Scholar 

  177. 177.

    Zhang, X., Liu, D., Ma, Y., Nie, J. & Sui, G. Super-hydrophobic graphene coated polyurethane (GN@PU) sponge with great oil-water separation performance. Appl. Surf. Sci. 422, 116–124 (2017).

    CAS  Google Scholar 

  178. 178.

    Zhu, H. et al. Graphene foam with switchable oil wettability for oil and organic solvents recovery. Adv. Funct. Mater. 25, 597–605 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

N.T. is supported by the Canada Research Chair in Biocolloids and Surfaces. N.Y. is supported by a McGill Engineering Doctoral Award and funding from the Natural Sciences and Engineering Research Council of Canada (NSERC). M.E. and X.L. acknowledge support received from the US National Science Foundation (NSF) through the NSF Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (grant EEC-1449500). The authors thank X. Weng for his contribution to data collection.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nathalie Tufenkji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yousefi, N., Lu, X., Elimelech, M. et al. Environmental performance of graphene-based 3D macrostructures. Nature Nanotech 14, 107–119 (2019). https://doi.org/10.1038/s41565-018-0325-6

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research