Interatomic force laws that evade dynamic measurement

Abstract

Measurement of the force between two atoms is performed routinely with the atomic force microscope. The shape of this interatomic force law is now found to directly regulate this capability: rapidly varying interatomic force laws, which are common in nature, can corrupt their own measurement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Frequency-modulation force spectroscopy.
Fig. 2: Inflection point test for assessing the ill-posedness of force measurements.

Change history

  • 09 January 2019

    In the version of this Comment originally published, equation (4) was incorrect; see the correction notice for details. This has now been corrected in the online versions of the Comment.

References

  1. 1.

    Garcia, R. & Perez, R. Surf. Sci. Rep. 47, 197–301 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    Giessibl, F. J. Rev. Mod. Phys. 75, 949–983 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    Dürig, U. Appl. Phys. Lett. 76, 1203–1205 (2000).

    Article  Google Scholar 

  4. 4.

    Giessibl, F. J. Appl. Phys. Lett. 78, 123–125 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    Sader, J. E. & Jarvis, S. P. Appl. Phys. Lett. 84, 1801–1803 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    Lantz, M. A. et al. Science 291, 2580–2583 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    Sugimoto, Y. et al. Nature 446, 64–67 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. Science 325, 1110–1114 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Gross, L. et al. Science 324, 1428–1431 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Welker, J. & Giessibl, F. J. Science 336, 444–449 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Weymouth, A. J., Hofmann, T. & Giessibl, F. J. Science 343, 1120–1122 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. Science 319, 1066–1069 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    Kawai, S. et al. Science 351, 957–961 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. J. Appl. Phys. 69, 668–673 (1991).

    Article  Google Scholar 

  15. 15.

    Giessibl, F. J. Phys. Rev. B 56, 16010–16015 (1997).

    CAS  Article  Google Scholar 

  16. 16.

    Phillips, D. L. J. ACM 9, 84–97 (1962).

    Article  Google Scholar 

  17. 17.

    Tikhonov, A. N. & Arsenin, V. Y. Solutions of Ill Posed Problems (Winston, Washington, 1977).

  18. 18.

    Hansen, P. C. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion (SIAM, Philadelphia, 1998).

  19. 19.

    Vogel, C. R. Computational Method for Inverse Problems (SIAM, Philadelphia, 2002).

  20. 20.

    Welker, J., Illek, E. & Giessibl, F. J. Beilstein J. Nanotechnol. 3, 238–248 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Sader, J. E., Hughes, B. D., Huber, F. & Giessibl, F. J. Preprint at https://arxiv.org/abs/1709.07571 (2017).

Download references

Acknowledgements

We acknowledge support from the Australian Research Council Centre of Excellence in Exciton Science (CE170100026), the Australian Research Council Grants Scheme and Deutsche Forschungsgemeinschaft within SFB 689, project A9, and CRC 1277, project A02. The referees are thanked for their comments.

Author information

Affiliations

Authors

Contributions

J.E.S. supervised the project. F.H. and F.J.G. performed initial measurements on the Cu–Cu atomic system in which an anomaly between the matrix and Sader–Jarvis methods was observed. This was communicated to J.E.S. who explored with B.D.H. various theories to explain the anomaly. J.E.S. identified ill-posedness in the inverse problem, formulated the inflection point test and performed all calculations. F.H. and F.J.G. devised and performed further measurements using the Cu–CO system to validate the inflection point test. All authors analysed the data and contributed to the writing of the paper.

Corresponding author

Correspondence to John E. Sader.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sader, J.E., Hughes, B.D., Huber, F. et al. Interatomic force laws that evade dynamic measurement. Nature Nanotech 13, 1088–1091 (2018). https://doi.org/10.1038/s41565-018-0277-x

Download citation

Further reading