Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical half-wave rectification at ferroelectric domain walls


Domain walls in ferroelectric semiconductors show promise as multifunctional two-dimensional elements for next-generation nanotechnology. Electric fields, for example, can control the direct-current resistance and reversibly switch between insulating and conductive domain-wall states, enabling elementary electronic devices such as gates and transistors. To facilitate electrical signal processing and transformation at the domain-wall level, however, an expansion into the realm of alternating-current technology is required. Here, we demonstrate diode-like alternating-to-direct current conversion based on neutral ferroelectric domain walls in ErMnO3. By combining scanning probe and dielectric spectroscopy, we show that the rectification occurs at the tip–wall contact for frequencies at which the walls are effectively pinned. Using density functional theory, we attribute the responsible transport behaviour at the neutral walls to an accumulation of oxygen defects. The practical frequency regime and magnitude of the direct current output are controlled by the bulk conductivity, establishing electrode–wall junctions as versatile atomic-scale diodes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Probing half-wave rectification at the nanoscale.
Fig. 2: Electrical half-wave rectification at domains and domain walls.
Fig. 3: Relation between bulk conductivity and rectifying behaviour of the tip-wall junction.
Fig. 4: Electrical rectification at neutral ferroelectric domain walls.
Fig. 5: Accumulation of oxygen interstitials at neutral ferroelectric domain walls.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Salje, E. K. H. Multiferroic domain boundaries as active memory devices: Trajectories towards domain boundary engineering. ChemPhysChem 11, 940–950 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Meier, D. Functional domain walls in multiferroics. J. Phys. Cond. Matter 27, 463003 (2015).

    Article  Google Scholar 

  5. 5.

    Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Schröder, M. et al. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936–3944 (2012).

    Article  Google Scholar 

  7. 7.

    Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3. Nat. Commun. 4, 1808 (2013).

    Article  Google Scholar 

  8. 8.

    Oh, Y. S., Luo, X., Huang, F.-T., Wang, Y. & Cheong, S.-W. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals. Nat. Mater. 14, 407–413 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011).

    Article  Google Scholar 

  11. 11.

    Sanchez-Santolino, G. et al. Resonant electron tunnelling assisted by charged domain walls in multiferroic tunnel junctions. Nat. Nanotech. 12, 655–662 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    McQuaid, R. G. P., Campbell, M. P., Whatmore, R. W., Kumar, A. & Gregg, J. M. Injection and controlled motion of conducting domain walls in improper ferroelectric Cu–Cl boracite. Nat. Commun. 8, 15105 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Hassanpour, E. et al. Robustness of magnetic and electric domains against charge carrier doping in multiferroic hexagonal ErMnO3. New J. Phys. 18, 043015 (2016).

    Article  Google Scholar 

  14. 14.

    Schaab, J. et al. Optimization of electronic domain-wall properties by aliovalent cation substitution. Adv. Electr. Mater. 2, 1500195 (2016).

    Article  Google Scholar 

  15. 15.

    Rojac, T. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 16, 322–327 (2016).

    Article  Google Scholar 

  16. 16.

    Mundy, J. A. et al. Functional electronic inversion layers at ferroelectric domain walls. Nat. Mater. 16, 622–627 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Maksymovych, P. et al. Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Lett. 11, 1906–1912 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Maksymovych, P. et al. Tunable metallic conductance in ferroelectric nanodomains. Nano Lett. 12, 209–213 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Crassous, A., Sluka, T., Tagantsev, A. K. & Setter, N. Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat. Nanotech. 10, 614–618 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Tselev, A. et al. Microwave AC conductivity of domain walls in ferroelectric thin films. Nat. Commun. 7, 11630 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Wu, X. et al. Low-energy structural dynamics of ferroelectric domain walls in hexagonal rare-earth manganites. Science Adv. 3, e1602371 (2017).

    Article  Google Scholar 

  22. 22.

    Prosandeev, S., Yang, Y., Paillard, C. & Bellaiche, L. Displacement current in domain walls of bismuth ferrite. npj Comput. Mater. 4, 8 (2018).

    Article  Google Scholar 

  23. 23.

    Chae, S. C. et al. Direct observation of the proliferation of ferroelectric loop domains and vortex–antivortex pairs. Phys. Rev. Lett. 108, 167603 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164–170 (2004).

    Article  Google Scholar 

  25. 25.

    Campbell, M. P. et al. Hall effect in charged conducting ferroelectric domain walls. Nat. Commun. 7, 13764 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Wu, W., Horibe, Y., Lee, N., Cheong, S.-W. & Guest, J. R. Conduction of topologically protected charged ferroelectric domain walls. Phys. Rev. Lett. 108, 077203 (2012).

    Article  Google Scholar 

  27. 27.

    Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9, 253–258 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Wu, W. et al. Polarization-modulated rectification at ferroelectric surfaces. Phys. Rev. Lett. 104, 217601 (2010).

    Article  Google Scholar 

  29. 29.

    Du, Y. et al. Domain wall conductivity in oxygen deficient multiferroic YMnO3 single crystals. Appl. Phys. Lett. 99, 252107 (2011).

    Article  Google Scholar 

  30. 30.

    Jesse, S., Mirman, B. & Kalinin, S. V. Resonance enhancement in piezoresponse force microscopy: Mapping electromechanical activity, contact stiffness, and Q factor. Appl. Phys. Lett. 89, 022906 (2006).

    Article  Google Scholar 

  31. 31.

    Douglas, A. M., Kumar, A., Whatmore, R. W. & Gregg, J. M. Local conductance: A means to extract polarization and depolarizing fields near domain walls in ferroelectrics. Appl. Phys. Lett. 107, 172905 (2015).

    Article  Google Scholar 

  32. 32.

    Ruff, E. et al. Conductivity contrast and tunneling charge transport in the vortex-like ferroelectric domain pattern of multiferroic hexagonal YMnO3. Phys. Rev. Lett. 118, 036803 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Jungk, T., Hoffmann, A. & Soergel, E. Impact of the tip radius on the lateral resolution in piezoresponse force microscopy. New J. Phys. 10, 013019 (2008).

    Article  Google Scholar 

  34. 34.

    Lunkenheimer, P. et al. Colossal dielectric constants in transition-metal oxides. Eur. Phys. J. Spec. Topics 180, 61–89 (2009).

    Article  Google Scholar 

  35. 35.

    Griffin, S. M. et al. Scaling behavior and beyond equilibrium in the hexagonal manganites. Phys. Rev. X 2, 041022 (2012).

    Google Scholar 

  36. 36.

    Meier, Q. N. et al. Global formation of topological defects in the multiferroic hexagonal manganites. Phys. Rev. X 7, 041014 (2017).

    Google Scholar 

  37. 37.

    Holtz, M. E. et al. Topological defects in hexagonal manganites: Inner structure and emergent electrostatics. Nano Lett. 17, 5883–5890 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Artyukhin, S. et al. Landau theory of topological defects in multiferroic hexagonal manganites. Nat. Mater. 13, 42–49 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Skjærvø, S. H. et al. Interstitial oxygen as a source of p-type conductivity in hexagonal manganites. Nat. Commun. 7, 13745 (2016).

    Article  Google Scholar 

  40. 40.

    Kumagai, Y. & Spaldin, N. A. Structural domain walls in polar hexagonal manganites. Nat. Commun. 4, 1540 (2013).

    Article  Google Scholar 

  41. 41.

    Yan, Z. et al. Growth of high-quality hexagonal ErMnO3 single crystals by the pressurized floating-zone method. J. Cryst. Growth 409, 75–79 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Article  Google Scholar 

  43. 43.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  44. 44.

    Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  45. 45.

    Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Article  Google Scholar 

  46. 46.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  47. 47.

    Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst. 41, 653–658 (2008).

    CAS  Article  Google Scholar 

Download references


The authors thank N.A. Spaldin, S.V. Kalinin and E. Soergel for fruitful discussions. D.M., M.F. and J.S. acknowledge funding from the SNF (Proposal No. 200021_149192) and the NTNU Onsager Fellowship Program (D.M.). Z.Y. and E.B. were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231 within the Quantum Materials Program no. KC2202. Electron microscopy work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-SC0002334. This work made use of the electron microscopy facility of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC Program (DMR-1719875). S.K. acknowledges funding from the DFG via the Transregional Collaborative Research Center TRR 80 (Augsburg/Munich/Stuttgart, Germany), and from the BMBF via ENREKON 03EK3015.

Author information




J.S. and X.D. conducted the SPM study under the supervision of D.M. with assistance from M.L. (supervised by M.F.). S.H.S. performed the DFT calculations, supervised by S.M.S. S.K. recorded the macroscopic dielectric spectroscopy data. M.E.H. obtained the STEM data, supervised by D.A.M. Z.Y. and E.B. grew the ErMnO3 crystals and M.L. prepared the series of samples with different conduction properties. J.S., S.K., A.C. and D.M. analysed the experimental data. D.M. initiated and coordinated this project, and wrote the manuscript, supported by J.S., S.K. and S.M.S. All authors discussed the results and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Dennis Meier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schaab, J., Skjærvø, S.H., Krohns, S. et al. Electrical half-wave rectification at ferroelectric domain walls. Nature Nanotech 13, 1028–1034 (2018).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research