Borophene as a prototype for synthetic 2D materials development


The synthesis of 2D materials with no analogous bulk layered allotropes promises a substantial breadth of physical and chemical properties through the diverse structural options afforded by substrate-dependent epitaxy. However, despite the joint theoretical and experimental efforts to guide materials discovery, successful demonstrations of synthetic 2D materials have been rare. The recent synthesis of 2D boron polymorphs (that is, borophene) provides a notable example of such success. In this Perspective, we discuss recent progress and future opportunities for borophene research. Borophene combines unique mechanical properties with anisotropic metallicity, which complements the canon of conventional 2D materials. The multi-centre characteristics of boron–boron bonding lead to the formation of configurationally varied, vacancy-mediated structural motifs, providing unprecedented diversity in a mono-elemental 2D system with potential for electronic applications, chemical functionalization, materials synthesis and complex heterostructures. With its foundations in computationally guided synthesis, borophene can serve as a prototype for ongoing efforts to discover and exploit synthetic 2D materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Summary of borophene structure and properties.
Fig. 2: Fundamentals of boron structure and chemistry.
Fig. 3: Theory of 2D boron in vacuum and on substrates.
Fig. 4: Experimental synthesis of borophene.
Fig. 5: Future prospects for borophene research.


  1. 1.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

  2. 2.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  3. 3.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

  4. 4.

    Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA 112, 4523–4530 (2015).

  5. 5.

    Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, 1–15 (2017).

  6. 6.

    Vogt, P. et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).

  7. 7.

    Feng, B. et al. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 12, 3507–3511 (2012).

  8. 8.

    Dávila, M. E., Xian, L., Cahangirov, S., Rubio, A. & Le Lay, G. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16, 095002 (2014).

  9. 9.

    Zhu, F. F. et al. Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015).

  10. 10.

    Ji, J. P. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016).

  11. 11.

    Nagao, T. et al. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7x7. Phys. Rev. Lett. 93, 105501 (2004).

  12. 12.

    Reis, F. et al. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science 357, 287–290 (2017).

  13. 13.

    Zhu, Z. et al. Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and axperimental study. Phys. Rev. Lett. 119, 106101 (2017).

  14. 14.

    Zhang, Y., Rubio, A. & Lay, G. L. Emergent elemental two-dimensional materials beyond graphene. J. Phys. D Appl. Phys. 50, aa4e8b (2017).

  15. 15.

    Pumera, M. & Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 29, 1605299 (2017).

  16. 16.

    Molle, A. et al. Buckled two-dimensional Xene sheets. Nat. Mater. 16, 163–169 (2017).

  17. 17.

    Liu, Y., Penev, E. S. & Yakobson, B. I. Probing the synthesis of two‐dimensional boron by first‐principles computations. Angew. Chem. Int. Ed. 52, 3156–3159 (2013).This paper provided the first predictions of Ag(111) as an ideal substrate for borophene growth.

  18. 18.

    Wu, X. et al. Two-dimensional boron monolayer sheets. ACS Nano 6, 7443–7453 (2012).

  19. 19.

    Penev, E. S., Bhowmick, S., Sadrzadeh, A. & Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 12, 2441–2445 (2012).This paper predicted structural polymorphism in borophene based on avacancy-mediated (that is, hollow hexagon) superstructural motif.

  20. 20.

    Mannix, A. J. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).This paper demonstrated the first experimental evidence for borophene synthesis under ultrahigh vacuum conditions on a Ag(111) substrate.

  21. 21.

    Zhang, Z., Yang, Y., Penev, E. S. & Yakobson, B. I. Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater. 27, 1605059 (2017).

  22. 22.

    Zhang, Z. et al. Substrate-induced nanoscale undulations of borophene on silver. Nano Lett. 16, 6622–6627 (2016).

  23. 23.

    Adamska, L., Sadasivam, S., Foley, J. J., Darancet, P. & Sharifzadeh, S. First-principles investigation of borophene as a monolayer transparent conductor. J. Phys. Chem. C 122, 4037–4045 (2018).

  24. 24.

    Zhao, Y., Zeng, S. & Ni, J. Superconductivity in two-dimensional boron allotropes. Phys. Rev. B 93, 014502 (2016).

  25. 25.

    Penev, E. S., Kutana, A. & Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 16, 2522–2526 (2016). Refs 24 and 25 predict superconductivity in borophene, a key attribute for futher fundamental and technological exploration.

  26. 26.

    Ogitsu, T., Schwegler, E. & Galli, G. β-Rhombohedral boron: at the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 113, 3425–3449 (2013).

  27. 27.

    Sergeeva, A. P. et al. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47, 1349–1358 (2014). Refs 27 and 33 provide important fundamentals of boron chemical bonding, including cluster planarity.

  28. 28.

    Oganov, A. R. et al. Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009).

  29. 29.

    Douglas, B. & Ho, S.-M. Structure and Chemistry of Crystalline Solids (Springer Science & Business Media, New York, 2007).

  30. 30.

    Matkovich, V. I. (ed.) Boron and Refractory Borides (Springer-Verlag, Berlin, 1977).

  31. 31.

    Kolmogorov, A. N. & Curtarolo, S. Theoretical study of metal borides stability. Phys. Rev. B 74, 224507 (2006).

  32. 32.

    Carenco, S., Portehault, D., Boissière, C., Mézailles, N. & Sanchez, C. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem. Rev. 113, 7981–8065 (2013).

  33. 33.

    Zhai, H.-J., Kiran, B., Li, J. & Wang, L.-S. Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity. Nat. Mater. 2, 827–833 (2003).

  34. 34.

    Zhai, H.-J. et al. Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014).

  35. 35.

    Piazza, Z. A., Hu, H. S., Li, W. L., Zhao, Y. F. & Li, J. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014).

  36. 36.

    Wang, Y. Q. & Duan, X. F. Crystalline boron nanowires. Appl. Phys. Lett. 82, 272–274 (2003).

  37. 37.

    Tian, J. et al. One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications. Nanoscale 2, 1375–1389 (2010).

  38. 38.

    Ciuparu, D., Klie, R. F., Zhu, Y. & Pfefferle, L. Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 108, 3967–3969 (2004).

  39. 39.

    Liu, F. et al. Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties. J. Mater. Chem. 20, 2197–2205 (2010).

  40. 40.

    Tai, G. et al. Synthesis of atomically thin boron films on copper foils. Angew. Chem. 54, 15693–15697 (2015).

  41. 41.

    Das, S. K., Bedar, A., Kannan, A. & Jasuja, K. Aqueous dispersions of few- layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Sci. Rep. 5, 10522 (2015).

  42. 42.

    Suehara, S., Aizawa, T. & Sasaki, T. Graphenelike surface boron layer: Structural phases on transition-metal diborides (0001). Phys. Rev. B 81, 085423 (2010).

  43. 43.

    Lau, K. C. & Pandey, R. Stability and electronic properties of atomistically-engineered 2D boron sheets. J. Phys. Chem. C 111, 2906–2912 (2007).

  44. 44.

    Boustani, I. Systematic ab initio investigation of bare boron clusters: Determination of the geometry and electronic structures of Bn (n = 2–14). Phys. Rev. B 55, 16426 (1997).

  45. 45.

    Zhou, X. F. et al. Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys. Rev. Lett. 112, 085502 (2014).

  46. 46.

    Tang, H. & Ismail-Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007).Refs 46, 48 and 49 introduced the α-sheet model for borophene, demonstrating a structure with relatively high stability that has provided a foundation for most subsequent theoretical work.

  47. 47.

    Yang, X., Ding, Y. & Ni, J. Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys. Rev. B 77, 041402 (2008).

  48. 48.

    Penev, E. S., Artyukhov, V. I., Ding, F. & Yakobson, B. I. Unfolding the fullerene: nanotubes, graphene and poly-elemental varieties by simulations. Adv. Mater. 24, 4956–4976 (2012).

  49. 49.

    Gonzalez Szwacki, N., Sadrzadeh, A. & Yakobson, B. I. B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 98, 245–244 (2007).

  50. 50.

    Zhang, Z., Penev, E. S. & Yakobson, B. I. Two-dimensional materials: Polyphony in B flat. Nat. Chem. 8, 525–527 (2016).

  51. 51.

    Tang, H. & Ismail-Beigi, S. First-principles study of boron sheets and nanotubes. Phys. Rev. B 82, 115412–115420 (2010).

  52. 52.

    Sun, X. et al. Two-dimensional boron crystals: structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 27, 1603300 (2017).

  53. 53.

    Liu, H., Gao, J. & Zhao, J. From boron cluster to two-dimensional boron sheet on Cu (111) surface: growth mechanism and hole formation. Sci. Rep. 3, 3238 (2013).

  54. 54.

    Zhang, Z., Yang, Y., Gao, G. & Yakobson, B. I. Two‐dimensional boron monolayers mediated by metal substrates. Angew. Chem. 127, 13214–13218 (2015).This paper was the first to predict the preferred v 1/6 structure later observed experimentally for the striped phase.

  55. 55.

    Feng, B. et al. Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016).This paper was the first experimental work to link flat structure models containing hollow hexagon superstructures with observations of borphene synthesis.

  56. 56.

    Zhong, Q. et al. Synthesis of borophene nanoribbons on Ag(110) surface. Phys. Rev. Mater. 1, 021001–021005 (2017).

  57. 57.

    Feng, B. et al. Direct evidence of metallic bands in a monolayer boron sheet. Phys. Rev. B 94, 041408–041405 (2016).

  58. 58.

    Feng, B. et al. Dirac fermions in borophene. Phys. Rev. Lett. 118, 096401–096406 (2017).

  59. 59.

    Zhang, Z., Shirodkar, S. N., Yang, Y. & Yakobson, B. I. Gate‐voltage control of borophene structure formation. Angew. Chem. 129, 15623–15628 (2017).

  60. 60.

    Wang, Y., Fan, J. & Trenary, M. Surface chemistry of boron oxidation. 1. Reactions of oxygen and water with boron films grown on tantalum(110). Chem. Mater. 5, 192–198 (1993).

  61. 61.

    Liu, X. et al. Self-assembly of electronically abrupt borophene/organic lateral heterostructures. Sci. Adv. 3, e1602356 (2017).

  62. 62.

    Huang, Y., Shirodkar, S. N. & Yakobson, B. I. Two-dimensional boron polymorphs for visible range plasmonics - a first-principles exploration. J. Am. Chem. Soc. 139, 17181–17185 (2017).

  63. 63.

    Nagamatsu, J., Makagawa, N., Murenaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39K in magnesium diboride. Nature 410, 63–64 (2001).

  64. 64.

    Kortus, J., Mazin, I. I., Belashchenko, K. D., Antropov, V. P. & Boyer, L. L. Superconductivity of metallic boron in MgB2. Phys. Rev. Lett. 86, 4656–4659 (2001).

  65. 65.

    Tsafack, T. & Yakobson, B. I. Thermomechanical analysis of two-dimensional boron monolayers. Phys. Rev. B 93, 165434 (2016).

  66. 66.

    Yan, Z., Peng, Z. & Tour, J. M. Chemical vapor deposition of graphene single crystals. Acc. Chem. Res. 47, 1327–1337 (2014).

  67. 67.

    Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotech. 10, 227–231 (2015).

  68. 68.

    Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

  69. 69.

    Ryder, C. R. et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8, 597–602 (2016).

  70. 70.

    Johns, J. E. & Hersam, M. C. Atomic covalent functionalization of graphene. Acc. Chem. Res. 46, 77–86 (2013).

  71. 71.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  72. 72.

    Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2016).

  73. 73.

    Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2013).

  74. 74.

    Liu, M., Artyukhov, V. I. & Yakobson, B. I. Mechanochemistry of one-dimensional boron: structural and electronic transitions. J. Am. Chem. Soc. 139, 2111–2117 (2017).

  75. 75.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

  76. 76.

    Er, Sl, de Wijs, G. A. & Brocks, G. DFT study of planar boron sheets: a new template for hydrogen storage. J. Phys. Chem. C 113, 18962–18967 (2009).

  77. 77.

    Jiang, H., Lu, Z., Wu, M., Ciucci, F. & Zhao, T. Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23, 97–104 (2016).

  78. 78.

    Zhang, X. et al. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8, 15340–15347 (2016).

  79. 79.

    Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotech. 13, 246–252 (2018).

Download references


This work was performed, in part, at the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility, and supported by the US Department of Energy, Office of Science, under Contract no. DE-AC02-06CH11357. A.J.M. acknowledges the National Science Foundation Graduate Fellowship Program (DGE-1324585). The work at Rice University was supported by the Department of Energy (DE-SC0012547, structure–synthesis models) and in part by the Office of Naval Research (N00014-15-1-2372, electronics and superconductivity). Z.Z. acknowledges the support of NSFC (11772153). M.C.H. also acknowledges the Office of Naval Research (N00014-17-1-2993).

Author information



Corresponding authors

Correspondence to Boris I. Yakobson or Mark C. Hersam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mannix, A.J., Zhang, Z., Guisinger, N.P. et al. Borophene as a prototype for synthetic 2D materials development. Nature Nanotech 13, 444–450 (2018).

Download citation

Further reading