Broadband, electrically tunable third-harmonic generation in graphene

Subjects

Abstract

Optical harmonic generation occurs when high intensity light (>1010 W m2) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong light–matter interaction and electrically and broadband tunable third-order nonlinear susceptibility. Here, we show that the third-harmonic generation efficiency in graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy. This enhancement is due to logarithmic resonances in the imaginary part of the nonlinear conductivity arising from resonant multiphoton transitions. Thanks to the linear dispersion of the massless Dirac fermions, gate controllable third-harmonic enhancement can be achieved over an ultrabroad bandwidth, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: THG measurements configurations and multiphoton resonances in SLG.
Fig. 2: Set-up used for the THG experiments.
Fig. 3: Energy dependence and gate tunability of THG.
Fig. 4: Broadband THGE electrical modulation.

References

  1. 1.

    Shen, Y. R. The Principles of Nonlinear Optics (John Wiley & Sons, NY, 1984).

    Google Scholar 

  2. 2.

    Butcher, P. N. & Cotter, D. The Elements of Nonlinear Optics (Cambridge University Press, Cambridge, 1991).

  3. 3.

    Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

    Article  Google Scholar 

  4. 4.

    Stolen, R. H., Bjorkholm, J. E. & Ashkin, A. Phase-matched three-wave mixing in silica fiber optical waveguides. Appl. Phys. Lett. 24, 308 (1974).

    Article  Google Scholar 

  5. 5.

    Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918 (1962).

    Article  Google Scholar 

  6. 6.

    Steinmeyer, G., Sutter, D. H., Gallmann, L., Matuschek, N. & Keller, U. Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics. Science 286, 1507–1512 (1999).

    Article  Google Scholar 

  7. 7.

    Chang, J. J., Warner, B. E., Dragon, E. P. & Martinez, M. W. Precision micromachining with pulsed green lasers. J. Laser Appl. 10, 285 (1998).

    Article  Google Scholar 

  8. 8.

    Garmire, E. Nonlinear optics in daily life. Opt. Express 21, 30532–30544 (2013).

    Article  Google Scholar 

  9. 9.

    Miller, G. D. et al. 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate. Opt. Lett. 22, 1834–1836 (1997).

    Article  Google Scholar 

  10. 10.

    Cerullo, G. & De Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1 (2003).

    Article  Google Scholar 

  11. 11.

    Bosenberg, W. R., Drobshoff, A., Alexander, J. I., Myers, L. E. & Byer, R. L. 93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator. Opt. Lett. 21, 1336–1338 (1996).

    Article  Google Scholar 

  12. 12.

    Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  Google Scholar 

  13. 13.

    Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  Google Scholar 

  14. 14.

    Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002).

    Article  Google Scholar 

  15. 15.

    Shcherbakov, M. R. et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano. Lett. 14, 6488–6492 (2014).

    Article  Google Scholar 

  16. 16.

    Chen, R., Lin, D. L. & Mendoza, B. Enhancement of the third-order nonlinear optical susceptibility in Si quantum wires. Phys. Rev. B 48, 11879–11882 (1993).

    Article  Google Scholar 

  17. 17.

    Tsang, T. Y. F. Surface-plasmon-enhanced third-harmonic generation in thin silver films. Opt. Lett. 21, 245–247 (1996).

    Article  Google Scholar 

  18. 18.

    Cai, W., Vasudev, A. P. & Brongersma, M. L. Electrically controlled nonlinear generation of light with plasmonics. Science 6050, 1720–1723 (2011).

    Article  Google Scholar 

  19. 19.

    Corcoran, B. et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat. Photon. 3, 206–210 (2009).

    Article  Google Scholar 

  20. 20.

    Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotech. 10, 407–411 (2015).

    Article  Google Scholar 

  21. 21.

    Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

    Article  Google Scholar 

  22. 22.

    Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).

    Article  Google Scholar 

  23. 23.

    Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017).

    Article  Google Scholar 

  24. 24.

    Saynatjoki, A. et al. Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers. Nat. Commun. 8, 893 (2017).

    Article  Google Scholar 

  25. 25.

    Klein, J. et al. Electric-field switchable second-harmonic generation in bilayer MoS2 by inversion symmetry breaking. Nano. Lett. 17, 392–398 (2017).

    Article  Google Scholar 

  26. 26.

    Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).

    Article  Google Scholar 

  27. 27.

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

    Article  Google Scholar 

  28. 28.

    Mikhailov, S. A. Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems. Phys. Rev. B 84, 045432 (2011).

    Article  Google Scholar 

  29. 29.

    Dean, J. J. & van Driel, H. M. Graphene and few-layer graphite probed by second-harmonic generation: theory and experiment. Phys. Rev. B 82, 125411 (2010).

    Article  Google Scholar 

  30. 30.

    An, Y. Q., Nelson, F., Lee, J. U. & Diebold, A. C. Enhanced optical second-harmonic generation from the current-biased graphene/SiO2/Si(001) structure. Nano. Lett. 13, 2104–2109 (2013).

    Article  Google Scholar 

  31. 31.

    An, Y. Q., Rowe, J. E., Dougherty, D. B., Lee, J. U. & Diebold, A. C. Optical second-harmonic generation induced by electric current in graphene on Si and SiC substrates. Phys. Rev. B 89, 115310 (2014).

    Article  Google Scholar 

  32. 32.

    Mikhailov, S. A. Quantum theory of the third-order nonlinear electrodynamic effects of graphene. Phys. Rev. B 93, 085403 (2016).

    Article  Google Scholar 

  33. 33.

    Rostami, H. & Polini, M. Theory of third-harmonic generation in graphene: a diagrammatic approach. Phys. Rev. B 93, 161411 (2016).

    Article  Google Scholar 

  34. 34.

    Cheng, J. L., Vermeulen, N. & Sipe, J. E. Third order optical nonlinearity of graphene. N. J. Phys. 16, 053014 (2014).

    Article  Google Scholar 

  35. 35.

    Rostami, H., Katsnelson, M. I. & Polini, M. Theory of plasmonic effects in nonlinear optics: the case of graphene. Phys. Rev. B 95, 035416 (2017).

    Article  Google Scholar 

  36. 36.

    Kumar, N. et al. Third harmonic generation in graphene and few-layer graphite films. Phys. Rev. B 87, 121406(R) (2013).

    Article  Google Scholar 

  37. 37.

    Alexander, K., Savostianova, N. A., Mikhailov, S. A., Kuyken, B. & Van Thourhout, D. Electrically tunable optical nonlinearities in graphene-covered SiN waveguides characterized by four-wave mixing. ACS Photonics 4, 3039–3044 (2017).

    Article  Google Scholar 

  38. 38.

    Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano. Lett. 7, 2711–2717 (2007).

    Article  Google Scholar 

  39. 39.

    Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    Article  Google Scholar 

  40. 40.

    Mañes, J. L. Symmetry-based approach to electron-phonon interactions in graphene. Phys. Rev. B 76, 045430 (2007).

    Article  Google Scholar 

  41. 41.

    Woodward, R. I. et al. Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy. 2D Mater. 4, 011006 (2017).

    Article  Google Scholar 

  42. 42.

    Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

    Article  Google Scholar 

  43. 43.

    Breusing, M. et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B 83, 153410 (2011).

    Article  Google Scholar 

  44. 44.

    Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A. C. & Robertson, J. Electron transport and hot phonons in carbon nanotubes. Phys. Rev. Lett. 95, 236802 (2005).

    Article  Google Scholar 

  45. 45.

    Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron–phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).

    Article  Google Scholar 

  46. 46.

    Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  Google Scholar 

  47. 47.

    Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotech. 8, 235–246 (2013).

    Article  Google Scholar 

  48. 48.

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  Google Scholar 

  49. 49.

    Cancado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano. Lett. 11, 3190–3196 (2011).

    Article  Google Scholar 

  50. 50.

    Bruna, M. et al. Doping dependence of the Raman spectrum of defected graphene. ACS Nano 8, 7432–7441 (2014).

    Article  Google Scholar 

  51. 51.

    Bonaccorso, F. et al. Production and processing of graphene and 2D crystals. Mater. Today 15, 564–589 (2012).

    Article  Google Scholar 

  52. 52.

    Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotech. 3, 210–215 (2008).

    Article  Google Scholar 

  53. 53.

    Basko, D. M., Piscanec, S. & Ferrari, A. C. Electron–electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009).

    Article  Google Scholar 

  54. 54.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  Google Scholar 

  55. 55.

    Xia, J., Chen, F., Li, J. & Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotech. 4, 505–509 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from EU Graphene Flagship, ERC Grant Hetero2D, and EPSRC grants EP/K01711X/1, EP/K017144/1, EP/N010345/1 and EP/L016087/1.

Author information

Affiliations

Authors

Contributions

A.C.F, G.C. and G.S. conceived and designed the experiments. G.S. and G.W. prepared the experimental set-up. G.S., G.W, S.D.C., M.C. and S.A.B. performed the THG experiments. G.S. analysed the THG data. A.K.O. and D.Y. measured the Raman spectra. D.G.P., T.M., B.L., D.D.F., J.W., J.E.M. and I.G. prepared the samples. H.R. and A.T. developed the THG theory and model for Te. G.S., A.C.F., G.C. and M.P. wrote the paper, with input from all authors.

Corresponding authors

Correspondence to Giancarlo Soavi or Andrea C. Ferrari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soavi, G., Wang, G., Rostami, H. et al. Broadband, electrically tunable third-harmonic generation in graphene. Nature Nanotech 13, 583–588 (2018). https://doi.org/10.1038/s41565-018-0145-8

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research