Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA scaffolds support stable and uniform peptide nanopores

Abstract

The assembly of peptides into membrane-spanning nanopores might be promoted by scaffolds to pre-organize the structures. Such scaffolds could enable the construction of uniform pores of various sizes and pores with controlled permutations around a central axis. Here, we show that DNA nanostructures can serve as scaffolds to arrange peptides derived from the octameric polysaccharide transporter Wza to form uniform nanopores in planar lipid bilayers. Our ring-shaped DNA scaffold is assembled from short synthetic oligonucleotides that are connected to Wza peptides through flexible linkers. When scaffolded, the Wza peptides form conducting nanopores of which only octamers are stable and of uniform conductance. Removal of the DNA scaffold by cleavage of the linkers leads to a rapid loss of the nanopores from the lipid bilayer, which shows that the scaffold is essential for their stability. The DNA scaffold also adds functionality to the nanopores by enabling reversible and permanent binding of complementary tagged oligonucleotides near the nanopore entrance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design, assembly and characterization of the DNA scaffolds for peptide nanopores.
Fig. 2: Attachment of the Wza peptides to oligonucleotides and annealing of peptide-bearing DNA scaffolds.
Fig. 3: Electrical properties of DNA-scaffolded octameric Wza peptide nanopores.
Fig. 4: The DNA scaffold stabilizes Wza peptide nanopores.
Fig. 5: The DNA scaffold is a versatile docking site for tagged oligonucleotides.

Similar content being viewed by others

References

  1. Luckey, M. Membrane Structural Biology 2nd edn (Cambridge Univ. Press, Cambridge, 2014).

  2. Zheng, J. & Trudeau M. C. (eds) Handbook of Ion Channels (CRC Press, Boca Raton, 2015).

  3. Gilbert, R. J. C., Bayley, H. & Anderluh, G. Membrane pores: from structure and assembly, to medicine and technology. Phil. Trans. Roy. Soc. Lond. 372, 20160208 (2017).

    Google Scholar 

  4. Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    CAS  Google Scholar 

  5. Ayub, M. & Bayley, H. Engineered transmembrane pores. Curr. Opin. Chem. Biol. 34, 117–126 (2016).

    CAS  Google Scholar 

  6. Koebnik, R., Locher, K. P. & van Gelder, P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol. Microbiol. 37, 239–253 (2000).

    CAS  Google Scholar 

  7. Tamm, L. K., Hong, H. & Liang, B. Folding and assembly of β-barrel membrane proteins. Biochim. Biophys. Acta 1666, 250–263 (2004).

    CAS  Google Scholar 

  8. Noinaj, N., Gumbart, J. C. & Buchanan, S. K. The beta-barrel assembly machinery in motion. Nat. Rev. Microbiol. 15, 197–204 (2017).

    CAS  Google Scholar 

  9. Dong, C. et al. Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 444, 226–229 (2006).

    CAS  Google Scholar 

  10. Kong, L. et al. Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor. Nat. Chem. 5, 651–659 (2013).

    CAS  Google Scholar 

  11. Soskine, M. et al. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Nano Lett. 12, 4895–4900 (2012).

    CAS  Google Scholar 

  12. Mahendran, K. R. et al. A monodisperse transmembrane α-helical peptide barrel. Nat. Chem. 9, 411–419 (2017).

    CAS  Google Scholar 

  13. Mutter, M. & Vuilleumier, S. A chemical approach to protein design—template-assembled synthetic proteins (TASP). Angew. Chem. Int. Ed. 28, 535–554 (1989).

    Google Scholar 

  14. Futaki, S. Peptide ion channels: design and creation of function. Pept. Sci. 47, 75–81 (1998).

    CAS  Google Scholar 

  15. Bayley, H. & Jayasinghe, L. Functional engineered channels and pores (review). Mol. Membr. Biol. 21, 209–220 (2004).

    CAS  Google Scholar 

  16. Pinheiro, A. V., Han, D., Shih, W. M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotech. 6, 763–772 (2011).

    CAS  Google Scholar 

  17. Wilner, O. I., Shimron, S., Weizmann, Y., Wang, Z.-G. & Willner, I. Self-assembly of enzymes on DNA scaffolds: en route to biocatalytic cascades and the synthesis of metallic nanowires. Nano Lett. 9, 2040–2043 (2009).

    CAS  Google Scholar 

  18. Fu, J. et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotech. 9, 531–536 (2014).

    CAS  Google Scholar 

  19. Zhang, Y., Tsitkov, S. & Hess, H. Proximity does not contribute to activity enhancement in the glucose oxidase–horseradish peroxidase cascade. Nat. Commun. 7, 13982 (2016).

    CAS  Google Scholar 

  20. Raschle, T., Lin, C., Jungmann, R., Shih, W. M. & Wagner, G. Controlled co-reconstitution of multiple membrane proteins in lipid bilayer nanodiscs using DNA as a scaffold. ACS Chem. Biol. 10, 2448–2454 (2015).

    CAS  Google Scholar 

  21. Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotech. 7, 389–393 (2012).

    CAS  Google Scholar 

  22. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    CAS  Google Scholar 

  23. Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012).

    CAS  Google Scholar 

  24. Burns, J. R., Stulz, E. & Howorka, S. Self-assembled DNA nanopores that span lipid bilayers. Nano Lett. 13, 2351–2356 (2013).

    CAS  Google Scholar 

  25. Karshikoff, A., Nilsson, L. & Ladenstein, R. Rigidity versus flexibility: the dilemma of understanding protein thermal stability. FEBS J. 282, 3899–3917 (2015).

    CAS  Google Scholar 

  26. von Krbek, L. K. S. et al. The delicate balance of preorganisation and adaptability in multiply Bonded host–guest complexes. Chem. Eur. J. 23, 2877–2883 (2017).

    Google Scholar 

  27. Jolliffe, K. A. Backbone-modified cyclic peptides: new scaffolds for supramolecular chemistry. Supramol. Chem. 17, 81–86 (2005).

    CAS  Google Scholar 

  28. Song, C. et al. Crystal structure and functional mechanism of a human antimicrobial membrane channel. Proc. Natl Acad. Sci. USA 110, 4586–4591 (2013).

    CAS  Google Scholar 

  29. Bowie, J. U. Solving the membrane protein folding problem. Nature 438, 581–589 (2005).

    CAS  Google Scholar 

  30. Krasilnikov, O. V. et al. Electrophysiological evidence for heptameric stoichiometry of ion channels formed by Staphylococcus aureus alpha-toxin in planar lipid bilayers. Mol. Microbiol. 37, 1372–1378 (2000).

    CAS  Google Scholar 

  31. Salay, L. C., Procopio, J., Oliveira, E., Nakaie, C. R. & Schreier, S. Ion channel-like activity of the antimicrobial peptide tritrpticin in planar lipid bilayers. FEBS Lett. 565, 171–175 (2004).

    CAS  Google Scholar 

  32. Paulmann, M. et al. Structure–activity analysis of the dermcidin-derived peptide DCD-1L, an anionic antimicrobial peptide present in human sweat. J. Biol. Chem. 287, 8434–8443 (2012).

    CAS  Google Scholar 

  33. Howorka, S. & Bayley, H. Probing distance and electrical potential within a protein pore with tethered DNA. Biophys. J. 83, 3202–3210 (2002).

    CAS  Google Scholar 

  34. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Google Scholar 

  35. Soskine, M., Biesemans, A., De Maeyer, M. & Maglia, G. Tuning the size and properties of ClyA nanopores assisted by directed evolution. J. Am. Chem. Soc. 135, 13456–13463 (2013).

    CAS  Google Scholar 

  36. Nicol, F., Nir, S. & Szoka, F. C. Orientation of the pore-forming peptide GALA in POPC vesicles determined by a BODIPY-avidin/biotin binding assay. Biophys. J. 76, 2121–2141 (1999).

    CAS  Google Scholar 

  37. Li, W., Nicol, F. & Szoka, F. C. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv. Drug Deliv. Rev. 56, 967–985 (2004).

    CAS  Google Scholar 

  38. Rausch, J. M., Marks, J. R. & Wimley, W. C. Rational combinatorial design of pore-forming β-sheet peptides. Proc. Natl Acad. Sci. USA 102, 10511–10515 (2005).

    CAS  Google Scholar 

  39. Krauson, A. J., He, J., Wimley, A. W., Hoffmann, A. R. & Wimley, W. C. Synthetic molecular evolution of pore-forming peptides by iterative combinatorial library screening. ACS Chem. Biol. 8, 823–831 (2013).

    CAS  Google Scholar 

  40. Gupta, K., Singh, S. & van Hoek, L. M. Short, synthetic cationic peptides have antibacterial activity against Mycobacterium smegmatis by forming pores in membrane and synergizing with antibiotics. Antibiotics 4, 358–378 (2015).

    CAS  Google Scholar 

  41. Thomson, A. R. et al. Computational design of water-soluble α-helical barrels. Science 346, 485 (2014).

    CAS  Google Scholar 

  42. Yusko, E. C. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotech. 12, 360–367 (2017).

    CAS  Google Scholar 

  43. Huang, G., Willems, K., Soskine, M., Wloka, C. & Maglia, G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 8, 935 (2017).

    Google Scholar 

  44. Soskine, M., Biesemans, A. & Maglia, G. Single-molecule analyte recognition with ClyA nanopores equipped with internal protein adaptors. J. Am. Chem. Soc. 137, 5793–5797 (2015).

    CAS  Google Scholar 

  45. Wanunu, M. et al. Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J. Am. Chem. Soc. 133, 486–492 (2011).

    CAS  Google Scholar 

  46. Taylor, A. I. et al. Nanostructures from synthetic genetic polymers. ChemBioChem 17, 1107–1110 (2016).

    CAS  Google Scholar 

  47. Hammerstein, A. F., Jayasinghe, L. & Bayley, H. Subunit dimers of α-hemolysin expand the engineering toolbox for protein nanopores. J. Biol. Chem. 286, 14324–14334 (2011).

    CAS  Google Scholar 

  48. Lee, J. & et al. Semisynthetic nanoreactor for reversible single-molecule covalent chemistry. ACS Nano 10, 8843–8850 (2016).

    CAS  Google Scholar 

  49. Williams, B. A. R. & Chaput, J. C. in S. L. Beaucage (ed.) Current Protocols in Nucleic Acid Chemistry (Wiley, Hoboken, 2010).

    Google Scholar 

  50. Gutsmann, T., Heimburg, T., Keyser, U., Mahendran, K. R. & Winterhalter, M. Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization. Nat. Protoc. 10, 188–198 (2015).

    Google Scholar 

Download references

Acknowledgements

E.S. acknowledges support from the European Union's Horizon 2020 Programme under grant 655660 (Hybripore). The work was supported by the BBSRC and a European Research Council Advanced Grant. The authors thank O. Wilner and K. R. Mahendran for their helpful discussions, E. Johnson for help with the TEM measurements and I. Liko and C. V. Robinson for their assistance in mass spectrometry.

Author information

Authors and Affiliations

Authors

Contributions

E.S. and H.B. conceived and designed the experiments and wrote the paper. E.S. performed the experiments and simulations and analysed data. S.T. performed photobleaching experiments and analysed data. All the authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Evan Spruijt or Hagan Bayley.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Data 1–4 and Supplementary References

Supplementary Video 1

OxDNA2 coarse-grained MD simulation of the DNA scaffold without external force applied to the arms. Duration, 0.152 ms; frame rate, 16.4 µs–1.

Supplementary Video 2

OxDNA2 coarse-grained MD simulation of the DNA scaffold with an external force applied to all terminal 3ʹ and 5ʹ nucleotides in the direction perpendicular to the plane of the ring leading to a down-pointing orientation of all arms within 5 µs. Duration, 30 µs; frame rate, 11.6 µs–1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spruijt, E., Tusk, S.E. & Bayley, H. DNA scaffolds support stable and uniform peptide nanopores. Nature Nanotech 13, 739–745 (2018). https://doi.org/10.1038/s41565-018-0139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0139-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing