Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots


In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude1,2. Control of such near-field light–matter interaction is essential for applications in biosensing3, light harvesting4 and quantum communication5,6 and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates7,8,9,10,11. However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Using biomolecular motors and microtubules to scan individual QDs across gold nanoslits.
Fig. 2: Quantitative mapping of QD–nanoslit near-field interactions.
Fig. 3: Numerical simulation of the QD–nanoslit near-field interactions.


  1. Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photon. 3, 654–657 (2009).

    Article  CAS  Google Scholar 

  2. Hoang, T. B. et al. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun. 6, 7788 (2015).

    Article  CAS  Google Scholar 

  3. Fabrizio, E. D. et al. Roadmap on biosensing and photonics with advanced nano-optical methods. J. Opt. 18, 063003 (2016).

    Article  Google Scholar 

  4. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

    Article  CAS  Google Scholar 

  5. Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).

    Article  CAS  Google Scholar 

  6. Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

    Article  CAS  Google Scholar 

  7. Farahani, J. N., Pohl, D. W., Eisler, H.-J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).

    Article  CAS  Google Scholar 

  8. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    Article  Google Scholar 

  9. Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  Google Scholar 

  10. Cang, H. et al. Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging. Nature 469, 385–388 (2011).

    Article  CAS  Google Scholar 

  11. Ropp, C. et al. Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot. Nat. Commun. 4, 1447 (2013).

    Article  Google Scholar 

  12. Wu, D., Liu, Z., Sun, C. & Zhang, X. Super-resolution imaging by random adsorbed molecule probes. Nano Lett. 8, 1159–1162 (2008).

    Article  CAS  Google Scholar 

  13. Stranahan, S. M. & Willets, K. A. Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett. 10, 3777–3784 (2010).

    Article  CAS  Google Scholar 

  14. Willets, K. A. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 43, 3854–3864 (2014).

    Article  CAS  Google Scholar 

  15. Wertz, E., Isaacoff, B. P., Flynn, J. D. & Biteen, J. S. Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale. Nano Lett. 15, 2662–2670 (2015).

    Article  CAS  Google Scholar 

  16. Raab, M., Vietz, C., Stefani, F. D., Acuna, G. P. & Tinnefeld, P. Shifting molecular localization by plasmonic coupling in a single-molecule mirage. Nat. Commun. 8, 13966 (2017).

    Article  CAS  Google Scholar 

  17. Fu, B., Isaacoff, B. P. & Biteen, J. S. Super-resolving the actual position of single fluorescent molecules coupled to a plasmonic nanoantenna. ACS Nano 11, 8978–8987 (2017).

    Article  CAS  Google Scholar 

  18. Michaelis, J., Hettich, C., Mlynek, J. & Sandoghdar, V. Optical microscopy using a single-molecule light source. Nature 405, 325–328 (2000).

    Article  CAS  Google Scholar 

  19. Kühn, S., Hettich, C., Schmitt, C., Poizat, J.-P. & Sandoghdar, V. Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy. J. Microsc. 202, 2–6 (2001).

    Article  Google Scholar 

  20. Nitzsche, B. et al. in Methods in Cell Biology Vol. 95 (eds. Wilson, L. & Correia, J. J.) Ch. 14, 247–271 (Academic Press, Cambridge, 2010).

  21. Hess, H., Clemmens, J., Howard, J. & Vogel, V. Surface imaging by self-propelled nanoscale probes. Nano Lett. 2, 113–116 (2002).

    Article  CAS  Google Scholar 

  22. Ruhnow, F., Zwicker, D. & Diez, S. Tracking single particles and elongated filaments with nanometer precision. Biophys. J. 100, 2820–2828 (2011).

    Article  CAS  Google Scholar 

  23. Palacci, H. et al. Velocity fluctuations in kinesin-1 gliding motility assays originate in motor attachment geometry variations. Langmuir 32, 7943–7950 (2016).

    Article  CAS  Google Scholar 

  24. Anikeyev, V., Temnov, V. V., Woggon, U., Devaux, E. & Ebbesen, T. W. Propagation oscillations in the near-field response of traveling surface waves launched by metallic nanoapertures. Appl. Phys. B 93, 171–176 (2008).

    Article  CAS  Google Scholar 

  25. Nitzsche, B., Ruhnow, F. & Diez, S. Quantum-dot-assisted characterization of microtubule rotations during cargo transport. Nat. Nanotech. 3, 552–556 (2008).

    Article  CAS  Google Scholar 

  26. Kerssemakers, J., Howard, J., Hess, H. & Diez, S. The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy. Proc. Natl Acad. Sci. USA 103, 15812–15817 (2006).

    Article  CAS  Google Scholar 

  27. Acuna, G. P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

    Article  CAS  Google Scholar 

  28. Gür, F. N., Schwarz, F. W., Ye, J., Diez, S. & Schmidt, T. L. Toward self-assembled plasmonic devices: high-yield arrangement of gold nanoparticles on DNA origami templates. ACS Nano 10, 5374–5382 (2016).

    Article  Google Scholar 

  29. van den Heuvel, M. G. L., Butcher, C. T., Smeets, R. M. M., Diez, S. & Dekker, C. High rectifying efficiencies of microtubule motility on kinesin-coated gold nanostructures. Nano Lett. 5, 1117–1122 (2005).

    Article  Google Scholar 

  30. Sun, Y., McKenna, J. D., Murray, J. M., Ostap, E. M. & Goldman, Y. E. Parallax: high accuracy three-dimensional single molecule tracking using split images. Nano Lett. 9, 2676–2682 (2009).

    Article  CAS  Google Scholar 

  31. Castoldi, M. & Popov, A. V. Purification of brain tubulin through two cycles of polymerization–depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88 (2003).

    Article  CAS  Google Scholar 

  32. Korten, T., Chaudhuri, S., Tavkin, E., Braun, M. & Diez, S. Kinesin-1 expressed in insect cells improves microtubule in vitro gliding performance, long-term stability and guiding efficiency in nanostructures. IEEE Trans. NanoBioscience 15, 62–69 (2016).

    Article  Google Scholar 

  33. Kern, W. The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137, 1887–1892 (1990).

    Article  CAS  Google Scholar 

  34. Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. & Hagen, G. M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014).

    Article  Google Scholar 

Download references


We thank M. Braun, R. Heintzman, A. Mitra, C. Reuther and T. Korten for fruitful discussions as well as C. Bräuer and T. Korten for supplying the kinesin-1 enzyme and technical support. This work was financially supported by the German Research Foundation (DFG) through the Center for Advancing Electronics Dresden (cfaed), the Heisenberg programme (DI 1226/4-1 to S.D.) and the European Social Funds (ESF) (contract 100111059, MindNano). H.G. and B.H. acknowledge financial support from the DFG via grant He5618/1-1 and a Reinhart Koselleck project.

Author information

Authors and Affiliations



H.S.H., F.W.S., B.H. and S.D. conceived and designed the experiments. H.S.H. and F.W.S. performed the experiments. H.S.H., J.E. and F.W.S. analysed the data. H.G. performed the numerical simulations. All authors contributed to writing the paper.

Corresponding authors

Correspondence to Bert Hecht or Stefan Diez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6; Supplementary Sections 1–2

Supplementary Video 1

QD-labelled microtubules gliding on a gold surface with nanoslits.

Supplementary Video 2

QD-labelled microtubules gliding on a bare glass substrate.

Supplementary Video 3

Close-up of QD-labelled microtubules gliding on a gold surface with nanoslits.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Groß, H., Heil, H.S., Ehrig, J. et al. Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots. Nature Nanotech 13, 691–695 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research