An artificial molecular machine that builds an asymmetric catalyst


Biomolecular machines perform types of complex molecular-level tasks that artificial molecular machines can aspire to. The ribosome, for example, translates information from the polymer track it traverses (messenger RNA) to the new polymer it constructs (a polypeptide)1. The sequence and number of codons read determines the sequence and number of building blocks incorporated into the biomachine-synthesized polymer. However, neither control of sequence2,3 nor the transfer of length information from one polymer to another (which to date has only been accomplished in man-made systems through template synthesis)4 is easily achieved in the synthesis of artificial macromolecules. Rotaxane-based molecular machines5,6,7 have been developed that successively add amino acids8,9,10 (including β-amino acids10) to a growing peptide chain by the action of a macrocycle moving along a mono-dispersed oligomeric track derivatized with amino-acid phenol esters. The threaded macrocycle picks up groups that block its path and links them through successive native chemical ligation reactions11 to form a peptide sequence corresponding to the order of the building blocks on the track. Here, we show that as an alternative to translating sequence information, a rotaxane molecular machine can transfer the narrow polydispersity of a leucine-ester-derivatized polystyrene chain synthesized by atom transfer radical polymerization12 to a molecular-machine-made homo-leucine oligomer. The resulting narrow-molecular-weight oligomer folds to an α-helical secondary structure13 that acts as an asymmetric catalyst for the Juliá–Colonna epoxidation14,15 of chalcones.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Assembly of an artificial molecular machine system that builds an asymmetric catalyst.
Fig. 2: Assembly of molecular machine–track conjugate 1 by elongation of rotaxane 2 with polymer 3.
Fig. 3: Operation of machine–track conjugate 1.
Fig. 4: α-Helicity of operation product oligoleucines before (9) and after (12) post-operational modification and their asymmetric Juliá–Colonna epoxidation of furyl chalcone 13.


  1. 1.

    Yonath, A. Hibernating bears, antibiotics, and the evolving ribosome (Nobel Lecture). Angew. Chem. Int. Ed. 49, 4340–4354 (2010).

    Article  Google Scholar 

  2. 2.

    Lutz, J.-F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).

    Article  Google Scholar 

  3. 3.

    ten Brummelhuis, N. Controlling monomer-sequence using supramolecular templates. Polym. Chem. 6, 654–667 (2015).

    Article  Google Scholar 

  4. 4.

    Polowinski, S. Template polymerisation and co-polymerisation. Prog. Polym. Sci. 27, 537–577 (2002).

    Article  Google Scholar 

  5. 5.

    Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  Google Scholar 

  6. 6.

    Sauvage, J.-P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    Article  Google Scholar 

  7. 7.

    Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article  Google Scholar 

  8. 8.

    Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    Article  Google Scholar 

  9. 9.

    De Bo, G. et al. Efficient assembly of threaded molecular machines for sequence-specific synthesis. J. Am. Chem. Soc. 136, 5811–5814 (2014).

    Article  Google Scholar 

  10. 10.

    De Bo, G. et al. Sequence-specific β-peptide synthesis by a rotaxane-based molecular machine. J. Am. Chem. Soc. 139, 10875–10879 (2017).

    Article  Google Scholar 

  11. 11.

    Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  Google Scholar 

  12. 12.

    Matyjaszewski, K. & Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 136, 6513–6533 (2014).

    Article  Google Scholar 

  13. 13.

    Andrews, M. J. I. & Tabor, A. B. Forming stable helical peptides using natural and artificial amino acids. Tetrahedron 55, 11711–11743 (1999).

    Article  Google Scholar 

  14. 14.

    Juliá, S., Masana, J. & Vega, J. C. ‘Synthetic enzymes’. Highly stereoselective epoxidation of chalcone in a triphasic toluene-water-poly[(S)-alanine] system. Angew. Chem. Int. Ed. 19, 929–931 (1980).

    Article  Google Scholar 

  15. 15.

    Juliá, S. et al. Synthetic enzymes. Part 2. Catalytic asymmetric epoxidation by means of polyamino-acids in a triphase system. J. Chem. Soc., Perkin Trans. 1, 1317–1324 (1982).

    Article  Google Scholar 

  16. 16.

    Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

    Article  Google Scholar 

  17. 17.

    van Dongen, S. F. M. et al. A clamp-like biohybrid catalyst for DNA oxidation. Nat. Chem. 5, 945–951 (2013).

    Article  Google Scholar 

  18. 18.

    Lewandowski, B. & Wennemers, H. Asymmetric catalysis with short-chain peptides. Curr. Opin. Chem. Biol. 22, 40–46 (2014).

    Article  Google Scholar 

  19. 19.

    Braun, D. et al. Analysis of the linear methods for determining copolymerization reactivity ratios, VII. A critical reexamination of radical copolymerizations of styrene. Angew. Makromol. Chem. 125, 161–205 (1984).

    Article  Google Scholar 

  20. 20.

    Young, R. J. & Lovell, P. A. Introduction to Polymers 3rd edn (CRC Press, Boca Raton, 2011).

  21. 21.

    Coessens, V. & Matyjaszewski, K. Dehalogenation of polymers prepared by atom transfer radical polymerization. Macromol. Rapid Comm. 20, 66–70 (1999).

    Article  Google Scholar 

  22. 22.

    Beychok, S. Circular dichroism of biological macromolecules. Science 154, 1288–1299 (1966).

    Article  Google Scholar 

  23. 23.

    Flood, R. W. et al. Efficient asymmetric epoxidation of α,β-unsaturated ketones using a soluble triblock polyethylene glycol−polyamino acid catalyst. Org. Lett. 3, 683–686 (2001).

    Article  Google Scholar 

  24. 24.

    Wan, Q. & Danishefsky, S. J. Free‐radical‐based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 46, 9248–9252 (2007).

    Article  Google Scholar 

  25. 25.

    Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  Google Scholar 

  26. 26.

    Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

    Article  Google Scholar 

  27. 27.

    Serreli, V., Lee, C.-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    Article  Google Scholar 

  28. 28.

    Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    Article  Google Scholar 

  29. 29.

    von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nat. Chem. 2, 96–101 (2010).

    Article  Google Scholar 

  30. 30.

    Kassem, S., Lee, A. T. L., Leigh, D. A., Markevicius, A. & Solà, J. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm. Nat. Chem. 8, 138–143 (2015).

    Article  Google Scholar 

  31. 31.

    Kassem, S. et al. Stereodivergent synthesis with a programmable molecular machine. Nature 549, 374–378 (2017).

    Article  Google Scholar 

Download references


The authors thank M. Turner and J. Behrendt for assistance with the SEC instrumentation, J. Clayden and M. De Poli for assistance with CD measurements and G. Smith for MALDI analysis of earlier related systems. The UMONS MS laboratory acknowledges the Fonds National de la Recherche Scientifique (FRS-FNRS) for its contribution to acquisition of the Waters QToF Premier and Synapt G2-Si mass spectrometers and for continuing support. This research was funded by the Engineering and Physical Sciences Research Council (EP/P027067/1). The authors thank the Royal Society for a University Research Fellowship (to G.D.B.) and a Research Professorship (to D.A.L.).

Author information




G.D.B., M.A.Y.G. and S.K. planned and carried out the experimental work. J.D.W. and P.G. performed the MS analysis of polymers 1 and 3. D.A.L. directed the research. All authors contributed to the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to David A. Leigh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Bo, G., Gall, M.A.Y., Kuschel, S. et al. An artificial molecular machine that builds an asymmetric catalyst. Nature Nanotech 13, 381–385 (2018).

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research