Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental observation of chiral magnetic bobbers in B20-type FeGe


Chiral magnetic skyrmions1,2 are nanoscale vortex-like spin textures that form in the presence of an applied magnetic field in ferromagnets that support the Dzyaloshinskii–Moriya interaction (DMI) because of strong spin–orbit coupling and broken inversion symmetry of the crystal3,4. In sharp contrast to other systems5,6 that allow for the formation of a variety of two-dimensional (2D) skyrmions, in chiral magnets the presence of the DMI commonly prevents the stability and coexistence of topological excitations of different types7. Recently, a new type of localized particle-like object—the chiral bobber (ChB)—was predicted theoretically in such materials8. However, its existence has not yet been verified experimentally. Here, we report the direct observation of ChBs in thin films of B20-type FeGe by means of quantitative off-axis electron holography (EH). We identify the part of the temperature–magnetic field phase diagram in which ChBs exist and distinguish two mechanisms for their nucleation. Furthermore, we show that ChBs are able to coexist with skyrmions over a wide range of parameters, which suggests their possible practical applications in novel magnetic solid-state memory devices, in which a stream of binary data bits can be encoded by a sequence of skyrmions and bobbers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: ChBs and SkTs in a nanostripe.
Fig. 2: Experimental evidence for the nucleation of chiral magnetic bobbers by means of in-field cooling.
Fig. 3: Nucleation of a ChB from an edge dislocation in the helical state in an inclined external magnetic field.
Fig. 4: Stability of chiral magnetic bobbers in different fields and temperatures.


  1. 1.

    Bogdanov, A. N. & Yablonskii, D. A. Thermodynamically stable ‘vortices’ in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68, 101 (1989).

    Google Scholar 

  2. 2.

    Ivanov, B. A., Stephanovich, V. A. & Zhmudskii, A. A. Magnetic vortices—the microscopic analogs of magnetic bubbles. J. Magn. Magn. Mater. 88, 116 (1990).

    Article  Google Scholar 

  3. 3.

    Dzyaloshinskii, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  Google Scholar 

  4. 4.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  Google Scholar 

  5. 5.

    Belavin, A. A. & Polyakov, A. M. Metastable states of two-dimensional isotropic ferromagnets. JETP Lett. 22, 245 (1975).

    Google Scholar 

  6. 6.

    Piette, B. M. A. G., Schroers, B. J. & Zakrzewski, W. J. Multisolitons in a two-dimensional Skyrme model. Z. Phys. C. 65, 165–174 (1995).

    Article  Google Scholar 

  7. 7.

    Koshibae, W. & Nagaosa, N. Theory of antiskyrmions in magnets. Nat. Commun. 7, 10542 (2016).

    Article  Google Scholar 

  8. 8.

    Rybakov, F. N., Borisov, A. B., Blügel, S. & Kiselev, N. S. New type of particlelike state in chiral magnets. Phys. Rev. Lett. 115, 117201 (2015).

    Article  Google Scholar 

  9. 9.

    Kanazawa, N., Seki, S. & Tokura, Y. Noncentrosymmetric magnets hosting magnetic skyrmions. Adv. Mater. 29, 1603227 (2017).

    Article  Google Scholar 

  10. 10.

    Yu, X. et al. Variation of skyrmion forms and their stability in MnSi thin plates. Phys. Rev. B 91, 054411 (2015).

    Article  Google Scholar 

  11. 11.

    Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).

    Article  Google Scholar 

  12. 12.

    Yu, X. Z. et al. Real space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  Google Scholar 

  13. 13.

    Shibata, K. et al. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin–orbit coupling. Nat. Nanotech. 8, 723–728 (2013).

    Article  Google Scholar 

  14. 14.

    Tokunaga, Y. et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638 (2015).

    Article  Google Scholar 

  15. 15.

    Li, W. et al. Emergence of skyrmions from rich parent phases in the molybdenum nitrides. Phys. Rev. B 93, 060409 (2016).

    Article  Google Scholar 

  16. 16.

    Dzyaloshinskii, I. E. Theory of helicoidal structures in antiferromagnets. III. Sov. Phys. JETP 20, 665 (1965).

    Google Scholar 

  17. 17.

    Lebech, B., Bernhard, J. & Freltoft, T. Magnetic structures of cubic FeGe studied by small-angle neutron scattering. J. Phys. Condens. Matter 35, 6105 (1989).

    Article  Google Scholar 

  18. 18.

    Rybakov, F. N., Borisov, A. B. & Bogdanov, A. N. Three-dimensional skyrmion states in thin films of cubic helimagnets. Phys. Rev. B 87, 094424 (2013).

    Article  Google Scholar 

  19. 19.

    Rybakov, F. N., Borisov, A. B., Blügel, S. & Kiselev, N. S. New spiral states and skyrmion lattice in 3D model of chiral magnet. New. J. Phys. 18, 045002 (2016).

    Article  Google Scholar 

  20. 20.

    Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

    Article  Google Scholar 

  21. 21.

    Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotech. 11, 449–454 (2016).

    Article  Google Scholar 

  22. 22.

    Kiselev, N. S., Bogdanov, A. N., Schäfer, R. & Rößler, U. K. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? J. Phys. D. 44, 392001 (2011).

    Article  Google Scholar 

  23. 23.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

    Article  Google Scholar 

  24. 24.

    Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 4, 271–280 (2009).

    Article  Google Scholar 

  25. 25.

    Park, H. S. et al. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. Nat. Nanotech. 9, 337–342 (2014).

    Article  Google Scholar 

  26. 26.

    Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    Article  Google Scholar 

  27. 27.

    Schütte, C. & Rosch, A. Dynamics and energetics of emergent magnetic monopoles in chiral magnets. Phys. Rev. B 90, 174432 (2014).

    Article  Google Scholar 

  28. 28.

    Leonov, A. O., Monchesky, T. L., Loudon, J. C. & Bogdanov, A. N. Three-dimensional chiral skyrmions with attractive interparticle interactions. J. Phys. Condens. Matter 28, 35 (2016).

    Article  Google Scholar 

  29. 29.

    Ahmed, A. S. et al. Chiral bobber formation in epitaxial FeGe/Si(111) films. Preprint at (2017).

  30. 30.

    Du, H. et al. Edge-mediated skyrmion chain and its collective dynamics in a confined geometry. Nat. Commun. 6, 8504 (2015).

    Article  Google Scholar 

  31. 31.

    Jin, C. et al. Control of morphology and formation of highly geometrically confined magnetic skyrmions. Nat. Commun. 8, 15569 (2017).

    Article  Google Scholar 

  32. 32.

    Chang, S. L. Y., Dwyer, C., Barthel, J., Boothroyd, C. B. & Dunin-Borkowski, R. E. Performance of a direct detection camera for off-axis electron holography. Ultramicroscopy 161, 90–97 (2016).

    Article  Google Scholar 

  33. 33.

    Voelkl, E. & Tang, D. Approaching routine 2π/1000 phase resolution for off-axis electron holography. Ultramicroscopy 110, 447–459 (2010).

    Article  Google Scholar 

  34. 34.

    McLeod, R. A., Bergen, M. & Malac, M. Phase measurement error in summation of electron holography series. Ultramicroscopy 141, 38–50 (2014).

    Article  Google Scholar 

  35. 35.

    Lichte, H. & Lehmann, M. Electron holography—basics and applications. Rep. Prog. Phys. 71, 016102 (2008).

    Article  Google Scholar 

  36. 36.

    Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article  Google Scholar 

  37. 37.

    Shibata, K. et al. Temperature and magnetic field dependence of the internal and lattice structures of skyrmions by off-axis electron holography. Phys. Rev. Lett. 118, 087202 (2017).

    Article  Google Scholar 

  38. 38.

    Döring, W. Point singularities in micromagnetism. J. Appl. Phys. 39, 1006 (1968).

    Article  Google Scholar 

  39. 39.

    Thiaville, A., Garca, J. M., Dittrich, R., Miltat, J. & Schrefl, T. Micromagnetic study of Bloch-point-mediated vortex core reversal. Phys. Rev. B 67, 094410 (2003).

    Article  Google Scholar 

  40. 40.

    Zverev, V. V. & Filippov, B. N. Simulation of three-dimensional micromagnetic structures in magnetically uniaxial films with in-plane anisotropy: static structures. Phys. Met. Metallogr. 114, 108–115 (2013).

    Article  Google Scholar 

  41. 41.

    Mansuripur, M. Computation of electron diffraction patterns in Lorentz electron microscopy of thin magnetic films. J. Appl. Phys. 69, 2455–2464 (1991).

    Article  Google Scholar 

  42. 42.

    Kovács, A. et al. Mapping the magnetization fine structure of a lattice of Bloch-type skyrmions in an FeGe thin film. Appl. Phys. Lett. 111, 192410 (2017).

    Article  Google Scholar 

Download references


This work was supported by the National Key R&D Program of China, grant no. 2017YFA0303201, the Natural Science Foundation of China, grant nos 51622105 and 11474290, the Key Research Program of Frontier Sciences, CAS, grant no. QYZDB-SSW-SLH009, the Key Research Program of the Chinese Academy of Science, grant no. KJZD-SW-M01, the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology, grant no. 2016FXCX001 and the Youth Innovation Promotion Association CAS no. 2015267. F.Z. and R.E.D.-B. acknowledge the European Union for funding through the Marie Curie Initial Training Network SIMDALEE2. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programmer (FP7/2007–2013)/ERC grant agreement no. 320832. The work of F.N.R. was supported by the Swedish Research Council grant no. 642-2013-7837. The work of A.B.B. was carried out within the state assignment of FASO of Russia (theme Quantum no. 01201463332).

Author information




N.S.K. and H.D. contributed to the planning of this study. F.N.R. proposed the concept and, together with A.B.B., performed the preliminary simulations. F.Z. together with D.S., S.W., N.S.K. and H.D. performed the experiments. H.D., A.K. and R.E.D.-B. supervised and designed the experiments. N.S.K. performed the micromagnetic simulations and prepared the initial version of the manuscript. J.C. calculated the theoretical phase-shift images. F.N.R., M.T., S.B. and R.E.D.-B. edited the manuscript. All of the authors discussed the results and contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Haifeng Du or Nikolai S. Kiselev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11, Supplementary Table 1, Supplementary references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Rybakov, F.N., Borisov, A.B. et al. Experimental observation of chiral magnetic bobbers in B20-type FeGe. Nature Nanotech 13, 451–455 (2018).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research