Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature

  • Nature Nanotechnologyvolume 13pages233237 (2018)
  • doi:10.1038/s41565-017-0044-4
  • Download Citation
Published online:


Magnetic skyrmions are topologically protected whirling spin textures that can be stabilized in magnetic materials by an asymmetric exchange interaction between neighbouring spins that imposes a fixed chirality. Their small size, together with the robustness against external perturbations, make magnetic skyrmions potential storage bits in a novel generation of memory and logic devices. To this aim, their contribution to the electrical transport properties of a device must be characterized—however, the existing demonstrations are limited to low temperatures and mainly in magnetic materials with a B20 crystal structure. Here we combine concomitant magnetic force microscopy and Hall resistivity measurements to demonstrate the electrical detection of sub-100 nm skyrmions in a multilayered thin film at room temperature. Furthermore, we detect and analyse the Hall signal of a single skyrmion, which indicates that it arises from the anomalous Hall effect with a negligible contribution from the topological Hall effect.

  • Subscribe to Nature Nanotechnology for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

  2. 2.

    Lee, M., Kang, W., Onose, Y., Tokura, Y. & Ong, N. P. Unusual Hall effect anomaly in MnSi under pressure. Phys. Rev. Lett. 102, 186601 (2009).

  3. 3.

    Kanazawa, N. et al. Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011).

  4. 4.

    Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

  5. 5.

    Li, Y. et al. Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. Phys. Rev. Lett. 110, 117202 (2013).

  6. 6.

    Porter, N. A., Gartside, J. C. & Marrows, C. H. Scattering mechanisms in textured FeGe thin films: magnetoresistance and the anomalous Hall effect. Phys. Rev. B 90, 024403 (2014).

  7. 7.

    Du, H. et al. Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires. Nat. Commun. 6, 7637 (2015).

  8. 8.

    Hanneken, C. et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nanotechnol. 10, 1039–1042 (2015).

  9. 9.

    Crum, D. M. et al. Perpendicular reading of single confined magnetic skyrmions. Nat. Commun. 6, 8541 (2015).

  10. 10.

    Kiselev, N. S., Bogdanov, A. N., Schäfer, R. & Rößler, U. K. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies?. J. Phys. D 44, 392001 (2011).

  11. 11.

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

  12. 12.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

  13. 13.

    Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

  14. 14.

    Chen, G., Mascaraque, A., N’Diaye, A. T. & Schmid, A. K. Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106, 242404 (2015).

  15. 15.

    Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

  16. 16.

    Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

  17. 17.

    Yu, G. et al. Room-temperature creation and spin–orbit torque manipulation of skyrmions in thin films with engineered asymmetry. Nano Lett. 16, 1981–1988 (2016).

  18. 18.

    Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

  19. 19.

    Jiang, W. et al. Mobile Néel skyrmions at room temperature: status and future. AIP Adv. 6, 055602 (2016).

  20. 20.

    Hrabec, A. et al. Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017).

  21. 21.

    Legrand, W. et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).

  22. 22.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

  23. 23.

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

  24. 24.

    Hrabec, A. et al. Measuring and tailoring the Dzyaloshinskii–Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 020402 (2014).

  25. 25.

    Yang, H., Thiaville, A., Rohart, S., Fert, A. & Chshiev, M. Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 115, 267210 (2015).

  26. 26.

    Belmeguenai, M. et al. Interfacial Dzyaloshinskii–Moriya interaction in perpendicularly magnetized Pt/Co/AlO x ultrathin films measured by Brillouin light spectroscopy. Phys. Rev. B 91, 180405 (2015).

  27. 27.

    Schott, M. et al. The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field. Nano Lett. 17, 3006–3012 (2017).

  28. 28.

    Bogdanov, A. N. & Rößler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 87, 037203 (2001).

  29. 29.

    Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

  30. 30.

    Heinonen, O., Jiang, W., Somaily, H., te Velthuis, S. G. E. & Hoffmann, A. Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents. Phys. Rev. B 93, 094407 (2016).

  31. 31.

    Kim, J.-V. & Yoo, M.-W. Current-driven skyrmion dynamics in disordered films. Appl. Phys. Lett. 110, 132404 (2017).

  32. 32.

    Baćani, M., Marioni, M. A., Schwenk, J. & Hug, H. J. How to measure the local Dzyaloshinskii–Moriya interaction in skyrmion thin-films multilayers. Preprint at (2016).

  33. 33.

    Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

  34. 34.

    Kanazawa, N. et al. Discretized topological Hall effect emerging from skyrmions in constricted geometry. Phys. Rev. B 91, 041122 (2015).

  35. 35.

    Bass, J. & Pratt, W. P. Current-perpendicular (CPP) magnetoresistance in magnetic metallic multilayers. J. Magn. Magn. Mater. 200, 274–289 (1999).

  36. 36.

    Hamamoto, K., Ezawa, M. & Nagaosa, N. Purely electrical detection of a skyrmion in constricted geometry. Appl. Phys. Lett. 108, 112401 (2016).

  37. 37.

    Ndiaye, P. B., Akosa, C. A. & Manchon, A. Topological Hall and spin Hall effects in disordered skyrmionic textures. Phys. Rev. B 95, 064426 (2017).

  38. 38.

    Denisov, K. S., Rozhansky, I. V., Averkiev, N. S. & Lähderanta, E. A nontrivial crossover in topological Hall effect regimes. Sci. Rep. 7, 17204 (2017).

  39. 39.

    Zeissler, K. et al. Direct imaging and electrical detection at room temperature of a single skyrmion. Preprint at (2017).

  40. 40.

    Raju, M. et al. Evolution of chiral magnetic textures and their topological Hall signature in Ir/Fe/Co/Pt multilayer films. Preprint at (2017).

Download references


We acknowledge C. Moreau-Luchaire for participating in the sample preparation, A. Vecchiola for technical support in the MFM measurements, D. Pinna for support in the analysis of the skyrmion profiles and C. Moutafis, S. Finizio, P. Warnicke and J. Raabe for their technical support at the (PolLux) beamline at SLS, Paul Scherrer Institüt, Villigen, Switzerland. We acknowledge financial support from European Union grant MAGicSky No. FET-Open-665095.

Author information


  1. Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau, France

    • Davide Maccariello
    • , William Legrand
    • , Nicolas Reyren
    • , Karin Garcia
    • , Karim Bouzehouane
    • , Sophie Collin
    • , Vincent Cros
    •  & Albert Fert


  1. Search for Davide Maccariello in:

  2. Search for William Legrand in:

  3. Search for Nicolas Reyren in:

  4. Search for Karin Garcia in:

  5. Search for Karim Bouzehouane in:

  6. Search for Sophie Collin in:

  7. Search for Vincent Cros in:

  8. Search for Albert Fert in:


N.R., V.C. and A.F. conceived the project. S.C. grew the multilayer films. K.G. patterned the samples. D.M. acquired the MFM data, transport measurements and STXM, treated and analysed the data with the help of N.R., W.L., K.B. and V.C. D.M., N.R., V.C. and A.F. prepared the manuscript. All authors discussed and commented the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Vincent Cros.

Supplementary information

  1. Supplementary Information

    Supplementary Text, Supplementary Figures 1–2