A broadband achromatic metalens for focusing and imaging in the visible

Abstract

A key goal of metalens research is to achieve wavefront shaping of light using optical elements with thicknesses on the order of the wavelength. Such miniaturization is expected to lead to compact, nanoscale optical devices with applications in cameras, lighting, displays and wearable optics. However, retaining functionality while reducing device size has proven particularly challenging. For example, so far there has been no demonstration of broadband achromatic metalenses covering the entire visible spectrum. Here, we show that by judicious design of nanofins on a surface, it is possible to simultaneously control the phase, group delay and group delay dispersion of light, thereby achieving a transmissive achromatic metalens with large bandwidth. We demonstrate diffraction-limited achromatic focusing and achromatic imaging from 470 to 670 nm. Our metalens comprises only a single layer of nanostructures whose thickness is on the order of the wavelength, and does not involve spatial multiplexing or cascading. While this initial design (numerical aperture of 0.2) has an efficiency of about 20% at 500 nm, we discuss ways in which our approach may be further optimized to meet the demand of future applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Dispersion engineering of metalenses.
Fig. 2: Optical properties of nanofins and scanning electron micrograph.
Fig. 3: Measured focal length shifts and intensity distributions of metalenses.
Fig. 4: Focal spot profiles and imaging using an achromatic metalens under different illumination wavelengths.

References

  1. 1.

    Chen, W. T. et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Lett. 17, 3188–3194 (2017).

    Article  Google Scholar 

  2. 2.

    Khorasaninejad, M. et al. Multispectral chiral imaging with a meta-lens. Nano Lett. 16, 4595–4600 (2016).

    Article  Google Scholar 

  3. 3.

    Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  Google Scholar 

  4. 4.

    Schonbrun, E., Seo, K. & Crozier, K. B. Reconfigurable imaging systems using elliptical nanowires. Nano Lett. 11, 4299–4303 (2011).

    Article  Google Scholar 

  5. 5.

    Chen, W. T. et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 27, 224002 (2016).

    Article  Google Scholar 

  6. 6.

    Balthasar Mueller, J. P., Leosson, K. & Capasso, F. Ultracompact metasurface in-line polarimeter. Optica 3, 42–47 (2016).

    Article  Google Scholar 

  7. 7.

    Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2, 716–723 (2015).

    Article  Google Scholar 

  8. 8.

    Chen, W. T. et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light Sci. Appl. 6, e16259 (2017).

    Article  Google Scholar 

  9. 9.

    Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  Google Scholar 

  10. 10.

    Wu, P. C. et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Lett. 17, 445–452 (2017).

    Article  Google Scholar 

  11. 11.

    Zhao, Z. et al. Multispectral optical metasurfaces enabled by achromatic phase transition. Sci. Rep. 5, 15781 (2015).

    Article  Google Scholar 

  12. 12.

    Pu, M. et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv 1, e1500396 (2015).

    Article  Google Scholar 

  13. 13.

    Ye, W. et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 7, 11930 (2016).

    Article  Google Scholar 

  14. 14.

    Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotech. 10, 308–312 (2015).

    Article  Google Scholar 

  15. 15.

    Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016).

    Article  Google Scholar 

  16. 16.

    Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

    Article  Google Scholar 

  17. 17.

    Hu, J., Liu, C.-H., Ren, X., Lauhon, L. J. & Odom, T. W. Plasmonic lattice lenses for multiwavelength achromatic focusing. ACS Nano 10, 10275–10282 (2016).

    Article  Google Scholar 

  18. 18.

    Avayu, O., Almeida, E., Prior, Y. & Ellenbogen, T. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017).

    Article  Google Scholar 

  19. 19.

    Faklis, D. & Morris, G. M. Spectral properties of multiorder diffractive lenses. Appl. Opt. 34, 2462–2468 (1995).

    Article  Google Scholar 

  20. 20.

    Li, Y. et al. Achromatic flat optical components via compensation between structure and material dispersions. Sci. Rep. 6, 19885 (2016).

    Article  Google Scholar 

  21. 21.

    Li, M., Al-Joumayly, M. A. & Behdad, N. Broadband true-time-delay microwave lenses based on miniaturized element frequency selective surfaces. IEEE Trans. Antennas Propag. 61, 1166–1179 (2013).

    Article  Google Scholar 

  22. 22.

    Cheng, J. & Mosallaei, H. Truly achromatic optical metasurfaces: a filter circuit theory-based design. J. Opt. Soc. Am. B 32, 2115–2121 (2015).

    Article  Google Scholar 

  23. 23.

    Ajioka, J. S. Broadband group delay waveguide lens. US patent 126,075 (1982).

  24. 24.

    Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819–1824 (2017).

    Article  Google Scholar 

  25. 25.

    Shrestha, S., Overvig, A. & Yu, N. Broadband achromatic metasurface lenses. In Conf. Lasers and Electro-Optics FM1H.3 (2017).

  26. 26.

    Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017).

    Article  Google Scholar 

  27. 27.

    Wang, S. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017).

    Article  Google Scholar 

  28. 28.

    Chen, L., Shakya, J. & Lipson, M. Subwavelength confinement in an integrated metal slot waveguide on silicon. Opt. Lett. 31, 2133–2135 (2006).

    Article  Google Scholar 

  29. 29.

    Zhang, L. et al. Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt. Express 20, 1685–1690 (2012).

    Article  Google Scholar 

  30. 30.

    Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl Acad. Sci. USA 113, 10473–10478 (2016).

    Article  Google Scholar 

  31. 31.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  Google Scholar 

  32. 32.

    Karagodsky, V., Sedgwick, F. G. & Chang-Hasnain, C. J. Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 18, 16973–16988 (2010).

    Article  Google Scholar 

  33. 33.

    Wang, S. & Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 32, 2606–2613 (1993).

    Article  Google Scholar 

  34. 34.

    Escuti, M. J., Kim, J. & Kudenov, M. W. Controlling light with geometric-phase holograms. Opt. Photon. News 27, 22–29 (2016).

    Article  Google Scholar 

  35. 35.

    Byrnes, S. J., Lenef, A., Aieta, F. & Capasso, F. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Express 24, 5110–5124 (2016).

    Article  Google Scholar 

  36. 36.

    Lin, Z., Groever, B., Capasso, F., Rodriguez, A. W. & Lončar, M. Topology optimized multi-layered meta-optics. Preprint at https://arxiv.org/abs/1706.06715 (2017).

  37. 37.

    Khorasaninejad, M. et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16, 7229–7234 (2016).

    Article  Google Scholar 

  38. 38.

    Wang, S., Lai, J., Wu, T., Chen, C. & Sun, J. Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface. Opt. Express 25, 7121–7130 (2017).

    Article  Google Scholar 

  39. 39.

    Yang, J. et al. Broadband planar achromatic anomalous reflector based on dispersion engineering of spoof surface plasmon polariton. Appl. Phys. Lett. 109, 211901 (2016).

    Article  Google Scholar 

  40. 40.

    Dastmalchi, B., Tassin, P., Koschny, T. & Soukoulis, C. M. Strong group-velocity dispersion compensation with phase-engineered sheet metamaterials. Phys. Rev. B 89, 115123 (2014).

    Article  Google Scholar 

  41. 41.

    Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

    Article  Google Scholar 

  42. 42.

    Caloz, C. Metamaterial dispersion engineering concepts and applications. Proc. IEEE 99, 1711–1719 (2011).

    Article  Google Scholar 

  43. 43.

    Qu, C. et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys. Rev. Lett. 115, 235503 (2015).

    Article  Google Scholar 

  44. 44.

    Gorelick, S., Guzenko, V. A., Vila-Comamala, J. & David, C. Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating. Nanotechnology 21, 295303 (2010).

    Article  Google Scholar 

  45. 45.

    Lee, S., Park, B., Kim, J. S. & Kim, T.-i Designs and processes toward high-aspect-ratio nanostructures at the deep nanoscale: unconventional nanolithography and its applications. Nanotechnology 27, 474001 (2016).

    Article  Google Scholar 

  46. 46.

    Gissibl, T., Thiele, S., Herkommer, A. & Giessen, H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon. 10, 554–560 (2016).

    Article  Google Scholar 

  47. 47.

    Shkondin, E. et al. Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition. J. Vac. Sci. Technol. 34, 031605 (2016).

    Article  Google Scholar 

  48. 48.

    Groever, B., Chen, W. T. & Capasso, F. Meta-lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017).

    Article  Google Scholar 

  49. 49.

    Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016).

    Article  Google Scholar 

  50. 50.

    Herzberger, M. & McClure, N. R. The design of superachromatic lenses. Appl. Opt. 2, 553–560 (1963).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (MURI, grant no. FA9550-14-1-0389 and grant no. FA9550-16-1-0156). This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation under NSF award no. 1541959. CNS is part of Harvard University. F.C. gratefully acknowledges a gift from Huawei Inc. under its HIRP FLAGSHIP programme. We thank Y.-W. Huang and J. Sisler for their help with measurements and simulations, respectively.

Author information

Affiliations

Authors

Contributions

W.T.C. and F.C. conceived the study. A.Y.Z. fabricated the metalenses. W.T.C., V.S., M.K., Z.S. and E.L. performed simulations and developed codes. W.T.C., A.Y.Z. and E.L. measured the metalenses. W.T.C., A.Y.Z., M.K. and F.C. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Federico Capasso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11

Videos

Supplementary Video 1

Phase profile of achromatic metalens

Supplementary Video 2

Phase profile of chromatic metalens (n = 2)

Supplementary Video 3

Simulated point spread functions of achromatic and chromatic metalenses

Supplementary Video 4

A real-time video of focal spots for an achromatic metalens (NA = 0.2)

Supplementary Video 5

A real-time video of focal spots for an achromatic metalens (NA = 0.02)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, W.T., Zhu, A.Y., Sanjeev, V. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotech 13, 220–226 (2018). https://doi.org/10.1038/s41565-017-0034-6

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research