Fast water transport in graphene nanofluidic channels

Abstract

Superfast water transport discovered in graphitic nanoconduits, including carbon nanotubes and graphene nanochannels, implicates crucial applications in separation processes and energy conversion. Yet lack of complete understanding at the single-conduit level limits development of new carbon nanofluidic structures and devices with desired transport properties for practical applications. Here, we show that the hydraulic resistance and slippage of single graphene nanochannels can be accurately determined using capillary flow and a novel hybrid nanochannel design without estimating the capillary pressure. Our results reveal that the slip length of graphene in the graphene nanochannels is around 16 nm, albeit with a large variation from 0 to 200 nm regardless of the channel height. We corroborate this finding with molecular dynamics simulation results, which indicate that this wide distribution of the slip length is due to the surface charge of graphene as well as the interaction between graphene and its silica substrate.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Hybrid nanochannel design for water transport measurement in single graphene nanochannels.
Fig. 2: Capillary-filling measurement in hybrid graphene–silica nanochannels.
Fig. 3: Experimental mass flow resistance ratio in hybrid nanochannels with heights varying from 24 to 124 nm.
Fig. 4: The extracted slip length (L Slip,G) based on equation (3) for each individual hybrid nanochannel with β 0 greater than 1.
Fig. 5: MD simulations of water slippage in graphene nanochannels.

References

  1. 1.

    Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44 (2005).

    Article  Google Scholar 

  2. 2.

    Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  Google Scholar 

  3. 3.

    Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335, 442–444 (2012).

    Article  Google Scholar 

  4. 4.

    Huang, H. et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 4, 2979 (2013).

    Google Scholar 

  5. 5.

    Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    Article  Google Scholar 

  6. 6.

    Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112, 1427–1434 (2008).

    Article  Google Scholar 

  7. 7.

    Das, R., Ali, M. E., Hamid, S. B. A., Ramakrishna, S. & Chowdhury, Z. Z. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 336, 97–109 (2014).

    Article  Google Scholar 

  8. 8.

    Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    Article  Google Scholar 

  9. 9.

    Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotech. 10, 459–464 (2015).

    Article  Google Scholar 

  10. 10.

    Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    Article  Google Scholar 

  11. 11.

    Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95–98 (2013).

    Article  Google Scholar 

  12. 12.

    Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  Google Scholar 

  13. 13.

    Candelaria, S. L. et al. Nanostructured carbon for energy storage and conversion. Nano Energy 1, 195–220 (2012).

    Article  Google Scholar 

  14. 14.

    Park, H. G. & Jung, Y. Carbon nanofluidics of rapid water transport for energy applications. Chem. Soc. Rev. 43, 565–576 (2014).

    Article  Google Scholar 

  15. 15.

    Xie, Q., Xin, F., Park, H. G. & Duan, C. Ion transport in graphene nanofluidic channels. Nanoscale 8, 19527–19535 (2016).

    Article  Google Scholar 

  16. 16.

    Yongqiang, R. & Derek, S. Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology 19, 195707 (2008).

    Article  Google Scholar 

  17. 17.

    Qin, X., Yuan, Q., Zhao, Y., Xie, S. & Liu, Z. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 11, 2173–2177 (2011).

    Article  Google Scholar 

  18. 18.

    Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).

    Article  Google Scholar 

  19. 19.

    Wei, N., Peng, X. & Xu, Z. Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces 6, 5877–5883 (2014).

    Article  Google Scholar 

  20. 20.

    Boukhvalov, D. W., Katsnelson, M. I. & Son, Y.-W. Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 13, 3930–3935 (2013).

    Article  Google Scholar 

  21. 21.

    Muscatello, J., Jaeger, F., Matar, O. K. & Müller, E. A. Optimizing water transport through graphene-based membranes: insights from nonequilibrium molecular dynamics. ACS Appl. Mater. Interfaces 8, 12330–12336 (2016).

    Article  Google Scholar 

  22. 22.

    Alibakhshi, M. A., Xie, Q., Li, Y. & Duan, C. Accurate measurement of liquid transport through nanoscale conduits. Sci. Rep. 6, 24936 (2016).

    Article  Google Scholar 

  23. 23.

    Tas, N. R., Haneveld, J., Jansen, H. V., Elwenspoek, M. & van den Berg, A. Capillary filling speed of water in nanochannels. Appl. Phys. Lett. 85, 3274–3276 (2004).

    Article  Google Scholar 

  24. 24.

    Haneveld, J., Tas, N. R., Brunets, N., Jansen, H. V. & Elwenspoek, M. Capillary filling of sub-10nm nanochannels. J. Appl. Phys. 104, 014309 (2008).

    Article  Google Scholar 

  25. 25.

    Mortensen, N. A. & Kristensen, A. Electroviscous effects in capillary filling of nanochannels. Appl. Phys. Lett. 92, 063110 (2008).

    Article  Google Scholar 

  26. 26.

    Phan, V.-N., Yang, C. & Nguyen, N.-T. Analysis of capillary filling in nanochannels with electroviscous effects. Microfluid. Nanofluid. 7, 519–530 (2009).

    Article  Google Scholar 

  27. 27.

    Wang, M., Chang, C.-C. & Yang, R.-J. Electroviscous effects in nanofluidic channels. J. Chem. Phys. 132, 024701 (2010).

    Article  Google Scholar 

  28. 28.

    Hong, J.-Y. et al. A rational strategy for graphene transfer on substrates with rough features. Adv. Mater. 28, 2382–2392 (2016).

    Article  Google Scholar 

  29. 29.

    Huang, W., Liu, Q. & Li, Y. Capillary filling flows inside patterned‐surface microchannels. Chem. Eng. Technol. 29, 716–723 (2006).

    Article  Google Scholar 

  30. 30.

    Sendner, C., Horinek, D., Bocquet, L. & Netz, R. R. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Langmuir 25, 10768–10781 (2009).

    Article  Google Scholar 

  31. 31.

    Goertz, M. P., Houston, J. E. & Zhu, X. Y. Hydrophilicity and the viscosity of interfacial water. Langmuir 23, 5491–5497 (2007).

    Article  Google Scholar 

  32. 32.

    Li, T.-D., Gao, J., Szoszkiewicz, R., Landman, U. & Riedo, E. Structured and viscous water in subnanometer gaps. Phys. Rev. B 75, 115415 (2007).

    Article  Google Scholar 

  33. 33.

    Secchi, E., Niguès, A., Jubin, L., Siria, A. & Bocquet, L. Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes. Phys. Rev. Lett. 116, 154501 (2016).

    Article  Google Scholar 

  34. 34.

    Ambrosi, A., Chua, C. K., Bonanni, A. & Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 114, 7150–7188 (2014).

    Article  Google Scholar 

  35. 35.

    Ping, J. & Johnson, A. T. C. Quantifying the intrinsic surface charge density and charge-transfer resistance of the graphene-solution interface through bias-free low-level charge measurement. Appl. Phys. Lett. 109, 013103 (2016).

    Article  Google Scholar 

  36. 36.

    Chen, F., Qing, Q., Xia, J., Li, J. & Tao, N. Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution. J. Am. Chem. Soc. 131, 9908–9909 (2009).

    Article  Google Scholar 

  37. 37.

    Zhong, J.-H. et al. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene. J. Am. Chem. Soc. 136, 16609–16617 (2014).

    Article  Google Scholar 

  38. 38.

    Rafiee, J. et al. Wetting transparency of graphene. Nat. Mater. 11, 217–222 (2012).

    Article  Google Scholar 

  39. 39.

    Shih, C.-J. et al. Breakdown in the wetting transparency of graphene. Phys. Rev. Lett. 109, 176101 (2012).

    Article  Google Scholar 

  40. 40.

    Shih, C.-J., Strano, M. S. & Blankschtein, D. Wetting translucency of graphene. Nat. Mater. 12, 866–869 (2013).

    Article  Google Scholar 

  41. 41.

    Maali, A., Cohen-Bouhacina, T. & Kellay, H. Measurement of the slip length of water flow on graphite surface. Appl. Phys. Lett. 92, 053101 (2008).

    Article  Google Scholar 

  42. 42.

    Thomas, J. A. & McGaughey, A. J. H. Reassessing fast water transport through carbon nanotubes. Nano Lett. 8, 2788–2793 (2008).

    Article  Google Scholar 

  43. 43.

    Kumar Kannam, S., Todd, B. D., Hansen, J. S. & Daivis, P. J. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations. J. Chem. Phys. 136, 024705 (2012).

    Article  Google Scholar 

  44. 44.

    Falk, K., Sedlmeier, F., Joly, L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010).

    Article  Google Scholar 

  45. 45.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  Google Scholar 

  46. 46.

    Shih, C.-J., Lin, S., Sharma, R., Strano, M. S. & Blankschtein, D. Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 28, 235–241 (2012).

    Article  Google Scholar 

  47. 47.

    Wei, N., Lv, C. & Xu, Z. Wetting of graphene oxide: a molecular dynamics study. Langmuir 30, 3572–3578 (2014).

    Article  Google Scholar 

  48. 48.

    Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles (Taylor & Francis, New York, 1988).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Faculty Startup Fund (Boston University, USA) and the NSF Faculty Early Career Development (CAREER) programme award (CBET-1653767). The authors would like to thank the Photonics Center at Boston University for the use of their fabrication and characterization facilities. S.J. and Z.X. acknowledge the support from the National Natural Science Foundation of China through grant no. 11472150. M.H. and J.K. are thankful for financial support by the AFOSR FATE MURI, grant no. FA9550-15-1-0514. H.G.P. appreciates the support from ETH grant (ETH-30 13-1) and Swiss National Science Foundation (200021-146856).

Author information

Affiliations

Authors

Contributions

C.D. conceived the idea and directed the project; C.D., Q.X. and M.A. designed the experiments; Q.X. fabricated the nanofluidic devices and performed the experiments; Q.X. and M.A. analysed the experimental data; S.J. and Z.X. performed the MD simulations; M.H., J.K. and H.G.P. provided graphene samples; C.D., Q.X. and Z.X. wrote the manuscript. All authors participated in completing the manuscript.

Corresponding author

Correspondence to Chuanhua Duan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Supplementary Tables 1–3, Supplementary References.

Videos

Supplementary Video 1

Supplementary Video 1.

Supplementary Video 2

Supplementary Video 2.

Supplementary Video 3

Supplementary Video 3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Alibakhshi, M.A., Jiao, S. et al. Fast water transport in graphene nanofluidic channels. Nature Nanotech 13, 238–245 (2018). https://doi.org/10.1038/s41565-017-0031-9

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research