Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants

Abstract

Electronic doping of colloidal semiconductor nanostructures holds promise for future device concepts in optoelectronic and spin-based technologies. Ag+ is an emerging electronic dopant in iii–v and ii–vi nanostructures, introducing intragap electronic states optically coupled to the host conduction band. With its full 4d shell Ag+ is nonmagnetic, and the dopant-related luminescence is ascribed to decay of the conduction-band electron following transfer of the photoexcited hole to Ag+. This optical activation process and the associated modification of the electronic configuration of Ag+ remain unclear. Here, we trace a comprehensive picture of the excitonic process in Ag-doped CdSe nanocrystals and demonstrate that, in contrast to expectations, capture of the photohole leads to conversion of Ag+ to paramagnetic Ag2+. The process of exciton recombination is thus inextricably tied to photoinduced magnetism. Accordingly, we observe strong optically activated magnetism and diluted magnetic semiconductor behaviour, demonstrating that optically switchable magnetic nanomaterials can be obtained by exploiting excitonic processes involving nonmagnetic impurities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical properties of Ag-doped CdSe NCs.
Fig. 2: SEC of Ag:CdSe NCs.
Fig. 3: DMS physics in Ag-doped NCs.
Fig. 4: Photoinduced paramagnetization of Ag-doped CdSe NCs.

Similar content being viewed by others

References

  1. Pietryga, J. M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    Article  Google Scholar 

  2. Sargent, E. H. Colloidal quantum dot solar cells. Nat. Photon. 6, 133–135 (2012).

    Article  Google Scholar 

  3. Pelayo García de Arquer, F., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Article  Google Scholar 

  4. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    Article  Google Scholar 

  5. Meinardi, F. et al. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nat. Photon. 11, 177–185 (2017).

    Article  Google Scholar 

  6. Meinardi, F. et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotech. 10, 878–885 (2015).

    Article  Google Scholar 

  7. Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–1779 (2008).

    Article  Google Scholar 

  8. Erwin, S. C. et al. Doping semiconductor nanocrystals. Nature 436, 91–94 (2005).

    Article  Google Scholar 

  9. Norris, D. J., Yao, N., Charnock, F. T. & Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 1, 3–7 (2001).

    Article  Google Scholar 

  10. Brovelli, S., Galland, C., Viswanatha, R. & Klimov, V. I. Tuning radiative recombination in Cu-doped nanocrystals via electrochemical control of surface trapping. Nano Lett. 12, 4372–4379 (2012).

    Article  Google Scholar 

  11. Sahu, A. et al. Electronic impurity doping in CdSe nanocrystals. Nano Lett. 12, 2587–2594 (2012).

    Article  Google Scholar 

  12. Kang, M. S., Sahu, A., Frisbie, C. D. & Norris, D. J. Influence of silver doping on electron transport in thin films of PbSe nanocrystals. Adv. Mater. 25, 725–731 (2013).

    Article  Google Scholar 

  13. Ochsenbein, S. T. et al. Charge-controlled magnetism in colloidal doped semiconductor nanocrystals. Nat. Nanotech. 4, 681–687 (2009).

    Article  Google Scholar 

  14. Pandey, A. et al. Long-lived photoinduced magnetization in copper-doped ZnSe–CdSe core–shell nanocrystals. Nat. Nanotech. 7, 792–797 (2012).

    Article  Google Scholar 

  15. Bussian, D. A. et al. Tunable magnetic exchange interactions in manganese-doped inverted core–shell ZnSe–CdSe nanocrystals. Nat. Mater. 8, 35–40 (2009).

    Article  Google Scholar 

  16. Rice, W. D. et al. Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals. Nat. Nanotech. 11, 137–142 (2016).

    Article  Google Scholar 

  17. Rice, W. D. et al. Direct measurements of magnetic polarons in Cd1–x Mn x Se nanocrystals from resonant photoluminescence. Nano Lett. 17, 3068–3075 (2017).

    Article  Google Scholar 

  18. Muckel, F. et al. Current-induced magnetic polarons in a colloidal quantum-dot device. Nano Lett. 17, 4768–4773 (2017).

    Article  Google Scholar 

  19. Krustok, J., Mädasson, J., Altosaar, M. & Kukk, P. The nature of recombination centres in silver- and chlorine-doped CdS phosphors. J. Phys. Chem. Solids 51, 1013–1018 (1990).

    Article  Google Scholar 

  20. Krustok, J. Orange luminescence of donor–acceptor pairs in CdS:Ag:Cl. J. Phys. Chem. Solids 53, 1027–1030 (1992).

    Article  Google Scholar 

  21. Peka, P. & Schulz, H.-J. Empirical one-electron model of optical transitions in Cu-doped ZnS and CdS. Phys. B 193, 57–65 (1994).

    Article  Google Scholar 

  22. Stringfellow, G. B. & Bube, R. H. Photoelectronic properties of ZnSe crystals. Phys. Rev. 171, 903–915 (1968).

    Article  Google Scholar 

  23. Viswanatha, R., Brovelli, S., Pandey, A., Crooker, S. A. & Klimov, V. I. Copper-doped inverted core/shell nanocrystals with ‘permanent’ optically active holes. Nano Lett. 11, 4753–4758 (2011).

    Article  Google Scholar 

  24. Nelson, H. D. et al. Mid-gap states and normal vs inverted bonding in luminescent Cu+- and Ag+-doped CdSe nanocrystals. J. Am. Chem. Soc. 139, 6411–6421 (2017).

    Article  Google Scholar 

  25. Liu, J. et al. Heterovalent-doping-enabled efficient dopant luminescence and controllable electronic impurity via a new strategy of preparing ii–vi nanocrystals. Adv. Mater. 27, 2753–2761 (2015).

    Article  Google Scholar 

  26. Mocatta, D. et al. Heavily doped semiconductor nanocrystal quantum dots. Science 332, 77–81 (2011).

    Article  Google Scholar 

  27. Kompch, A. et al. Localization of Ag dopant atoms in CdSe nanocrystals by reverse Monte Carlo analysis of EXAFS spectra. J. Phys. Chem. C 119, 18762–18772 (2015).

    Article  Google Scholar 

  28. Grochala, W. & Hoffmann, R. Real and hypothetical intermediate-valence AgII/AgIII and AgII/AgI fluoride systems as potential superconductors. Angew. Chem. Int. Ed. 40, 2742–2781 (2001).

    Article  Google Scholar 

  29. Dean, P. J., Fitzpatrick, B. J. & Bhargava, R. N. Optical properties of ZnSe doped with Ag and Au. Phys. Rev. B 26, 2016–2035 (1982).

    Article  Google Scholar 

  30. Holtz, P. O., Monemar, B. & Loykowski, H. J. Optical properties of Ag-related centers in bulk ZnSe. Phys. Rev. B 32, 986–996 (1985).

    Article  Google Scholar 

  31. Nedeoglo, N. D., Sirkeli, V. P., Nedeoglo, D. D., Laiho, R. & Lähderanta, E. Electron configuration and charge state of electrically active Cu, Ag and Au ions in ZnSe. J. Phys. Condens. Matter 18, 8113 (2006).

    Article  Google Scholar 

  32. McMillan, J. A. Higher oxidation states of silver. Chem. Rev. 62, 65–80 (1962).

    Article  Google Scholar 

  33. Burdett, J. K. & Eisenstein, O. From three- to four-coordination in copper(I) and silver(I). Inorg. Chem. 31, 1758–1762 (1992).

    Article  Google Scholar 

  34. Vydyanath, H. R. & Kröger, F. A. The defect structure of silver-doped CdS. J. Phys. Chem. Solids 36, 509–520 (1975).

    Article  Google Scholar 

  35. Jana, S., Manna, G., Srivastava, B. B. & Pradhan, N. Tuning the emission colors of semiconductor nanocrystals beyond their bandgap tunability: all in the dope. Small 9, 3753–3758 (2013).

    Article  Google Scholar 

  36. Srivastava, B. B., Jana, S. & Pradhan, N. Doping Cu in semiconductor nanocrystals: some old and some new physical insights. J. Am. Chem. Soc. 133, 1007–1015 (2011).

    Article  Google Scholar 

  37. Lupo, M. G. et al. Ultrafast electron–hole dynamics in core/shell CdSe/CdS dot/rod nanocrystals. Nano Lett. 8, 4582–4587 (2008).

    Article  Google Scholar 

  38. Pinchetti, V. et al. Spectro-electrochemical probing of intrinsic and extrinsic processes in exciton recombination in iiiivi 2 nanocrystals. Nano Lett. 17, 4508–4517 (2017).

    Article  Google Scholar 

  39. Lorenzon, M. et al. Role of nonradiative defects and environmental oxygen on exciton recombination processes in CsPbBr3 perovskite nanocrystals. Nano Lett. 17, 3844–3853 (2017).

    Article  Google Scholar 

  40. Lorenzon, M. et al. Reversed oxygen sensing using colloidal quantum wells towards highly emissive photoresponsive varnishes. Nat. Commun. 6, 6434 (2015).

    Article  Google Scholar 

  41. Padilha, L. A. et al. Spectral dependence of nanocrystal photoionization probability: the role of hot-carrier transfer. ACS Nano 5, 5045–5055 (2011).

    Article  Google Scholar 

  42. Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988).

    Article  Google Scholar 

  43. Kuno, M., Nirmal, M., Bawendi, M. G., Efros, A. & Rosen, M. Magnetic circular dichroism study of CdSe quantum dots. J. Chem. Phys. 108, 4242–4247 (1998).

    Article  Google Scholar 

  44. Schulz, H. J. Optical properties of 3d transition metals in ii–vi compounds. J. Cryst. Growth 59, 65–80 (1982).

    Article  Google Scholar 

  45. Schulz, H. J. Transition metal impurities in compound semiconductors: experimental situation. Mater. Chem. Phys. 16, 373–384 (1987).

    Article  Google Scholar 

  46. Johnston-Halperin, E. et al. Spin spectroscopy of dark excitons in CdSe quantum dots to 60 T. Phys. Rev. B 63, 205309 (2001).

    Article  Google Scholar 

  47. Stern, N. P. et al. Spin dynamics in electrochemically charged CdSe quantum dots. Phys. Rev. B 72, 161303 (2005).

    Article  Google Scholar 

  48. Archer, P. I., Santangelo, S. A. & Gamelin, D. R. Direct observation of spd exchange interactions in colloidal Mn2+- and Co2+-doped CdSe quantum dots. Nano Lett. 7, 1037–1043 (2007).

    Article  Google Scholar 

  49. Poolton, N. R. J., Davies, J. J., Nicholls, J. E. & Fitzpatrick, B. J. An ODMR investigation of silver doped ZnSe. J. Cryst. Growth 72, 336–341 (1985).

    Article  Google Scholar 

  50. Li, L., Hu, F., Xu, D., Shen, S. & Wang, Q. Metal ion redox potential plays an important role in high-yield synthesis of monodisperse silver nanoparticles. Chem. Commun. 48, 4728–4730 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Q.D. and J.Z. acknowledge support from the National Natural Science Foundation of China (grants 51372025, 91323301 and 51631001). A.C. and M.Z.-R. acknowledge support from the project MIUR-PRIN 2015WTW7J3. Work at the National High Magnetic Field Laboratory is supported by the US National Science Foundation (DMR-1157490), the State of Florida, and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

S.B. conceived this study. Q.D. and J.Z. developed and synthesized the samples and performed the structural and analytical characterization. V.P. and M.L., with the assistance of M.F. and F.M., performed the optical and spectroelectrochemical measurements. A.C., V.P. and M.Z.-R. collected and analysed the transient transmission data. V.P. and S.A.C. performed the magneto-optical experiments. V.P., S.A.C. and S.B. analysed the data. V.P. and S.B. wrote the paper in consultation with all authors.

Corresponding authors

Correspondence to Jiatao Zhang or Sergio Brovelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Table 1, Supplementary discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinchetti, V., Di, Q., Lorenzon, M. et al. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants. Nature Nanotech 13, 145–151 (2018). https://doi.org/10.1038/s41565-017-0024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-017-0024-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing