Article | Published:

Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions

Nature Nanotechnologyvolume 13pages152158 (2018) | Download Citation

Abstract

Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p–n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2–MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2–MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2–MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  2. 2.

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

  3. 3.

    Duan, X. D., Wang, C., Pan, A. L., Yu, R. Q. & Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44, 8859–8876 (2015).

  4. 4.

    Liu, G. B., Xiao, D., Yao, Y. G., Xu, X. D. & Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643–2663 (2015).

  5. 5.

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

  6. 6.

    Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

  7. 7.

    Tongay, S. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 14, 3185–3190 (2014).

  8. 8.

    Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotech. 9, 682–686 (2014).

  9. 9.

    Chiu, M.-H. et al. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 6, 7666 (2015).

  10. 10.

    Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

  11. 11.

    Huang, C. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

  12. 12.

    Gong, Y. J. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

  13. 13.

    Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotech. 9, 1024–1030 (2014).

  14. 14.

    Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).

  15. 15.

    Yun, W. S., Han, S. W., Hong, S. C., Kim, I. G. & Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85, 033305 (2012).

  16. 16.

    Johari, P. & Shenoy, V. B. Tuning the electronic properties of semiconducting transitionmetal dichalcogenides by applying mechanical strains. ACS Nano 6, 5449–5456 (2012).

  17. 17.

    Li, H. et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015).

  18. 18.

    Shi, H., Pan, H., Zhang, Y. W. & Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 87, 155304 (2013).

  19. 19.

    Liu, Z. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014).

  20. 20.

    Hui, Y. Y. et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7, 7126–7131 (2013).

  21. 21.

    Feng, J., Qian, X., Huang, C.-W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 6, 866–872 (2012).

  22. 22.

    He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931–2936 (2013).

  23. 23.

    Zhu, C. R. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 88, 121301 (2013).

  24. 24.

    Rice, C. et al. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 87, 081307 (2013).

  25. 25.

    Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013).

  26. 26.

    Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

  27. 27.

    Liu, N., Tersoff, J., Baklenov, O., Holmes, A. L. & Shih, C. K. Nonuniform composition profile in In0.5Ga0.5As alloy quantum dots. Phys. Rev. Lett. 84, 334–337 (2000).

  28. 28.

    Cosma, D. A., Wallbank, J. R., Cheianov, V. & Fal’ko, V. I. Moiré pattern as a magnifying glass for strain and dislocations in van der Waals heterostructures. Faraday Discuss. 173, 137–143 (2014).

  29. 29.

    Jiang, Y. et al. Visualizing strain-induced pseudomagnetic fields in graphene through an hBN magnifying glass. Nano Lett. 17, 2839–2843 (2017).

  30. 30.

    Zhang, C. et al. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).

  31. 31.

    Goodier, J. N. Concentration of stress around spherical and cylindrical inclusions and flaws. J. Appl. Mech. Trans. ASME 55, 39–44 (1933).

  32. 32.

    Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).

  33. 33.

    Guzman, D. M. & Strachan, A. Role of strain on electronic and mechanical response of semiconducting transition-metal dichalcogenide monolayers: An ab-initio study. J. Appl. Phys. 115, 243701 (2014).

  34. 34.

    Zhang, C. et al. Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe2. Nano Lett. 15, 6494–6500 (2015).

  35. 35.

    Park, J. et al. Spatially resolved one-dimensional boundary states in graphene–hexagonal boron nitride planar heterostructures. Nat. Commun. 5, 5403 (2014).

Download references

Acknowledgements

This research was supported with grants from the Welch Foundation (F-1672), the US National Science Foundation (NSF) (DMR-1306878, EFMA-1542747) and the Materials Research Science and Engineering Center (DMR-1720595). L.J.L. acknowledges support from KAUST (Saudi Arabia), MOST and TCECM, Academia Sinica (Taiwan) and AOARD FA23861510001 (USA). C.Z acknowledges support from the National Natural Science Foundation of China (Grant No. 11774268). Y.S.S acknowledges support from the Yan Jici Talent Students Program. This work made use of the electron microscopy facility of the Cornell Center for Materials Research with support from the NSF (DMR-1719875 and DMR-1429155).

Author information

Affiliations

  1. Department of Physics, University of Texas at Austin, Austin, TX, USA

    • Chendong Zhang
    • , Yushan Su
    •  & Chih-Kang Shih
  2. School of Physics and Technology, Wuhan University, Wuhan, China

    • Chendong Zhang
  3. Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

    • Ming-Yang Li
    •  & Lain-Jong Li
  4. Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan

    • Ming-Yang Li
  5. IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY, USA

    • Jerry Tersoff
  6. School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA

    • Yimo Han
    •  & David A. Muller
  7. School of the Gifted Young, University of Science and Technology of China, Hefei, Anhui, China

    • Yushan Su
  8. Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA

    • David A. Muller

Authors

  1. Search for Chendong Zhang in:

  2. Search for Ming-Yang Li in:

  3. Search for Jerry Tersoff in:

  4. Search for Yimo Han in:

  5. Search for Yushan Su in:

  6. Search for Lain-Jong Li in:

  7. Search for David A. Muller in:

  8. Search for Chih-Kang Shih in:

Contributions

C.Z. carried out the STM/S measurements. M.-Y.L. and L.-J.L. performed the chemical vapour deposition growth of WSe2–MoS2 heterojunctions. Y.S. helped determine strain tensors from distorted moiré patterns. Y.H. and D.A.M. performed the scanning transmission electron microscopy investigations. J.T. identified the mechanisms of strain relaxation and explained the strain distribution. C.-K.S. advised on the experiments and provided input on the data analysis. C.-K.S. and C.Z. wrote the paper with input from the co-authors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Chendong Zhang or Chih-Kang Shih.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Figures 1–12, Supplementary references

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41565-017-0022-x