Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low-dose dengue virus 3 human challenge model: a phase 1 open-label study

Subjects

Abstract

Dengue human infection models present an opportunity to explore the potential of a vaccine, anti-viral or immuno-compound for clinical benefit in a controlled setting. Here we report the outcome of a phase 1 open-label assessment of a low-dose dengue virus 3 (DENV-3) challenge model (NCT04298138), in which nine participants received a subcutaneous inoculation with 0.5 ml of a 1.4 × 103 plaque-forming unit per ml suspension of the attenuated DENV-3 strain CH53489. The primary and secondary endpoints of the study were to assess the safety of this DENV-3 strain in healthy flavivirus-seronegative individuals. All participants developed RNAaemia within 7 days after inoculation with peak titre ranging from 3.13 × 104 to 7.02 × 108 genome equivalents per ml. Solicited symptoms such as fever and rash, clinical laboratory abnormalities such as lymphopenia and thrombocytopenia, and self-reported symptoms such as myalgia were consistent with mild-to-moderate dengue in all volunteers. DENV-3-specific seroconversion and memory T cell responses were observed within 14 days after inoculation as assessed by enzyme-linked immunosorbent assay and interferon-gamma-based enzyme-linked immunospot. RNA sequencing and serum cytokine analysis revealed anti-viral responses that overlapped with the period of viraemia. The magnitude and frequency of clinical and immunologic endpoints correlated with an individual’s peak viral titre.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Viral kinetics of CH53489 challenge.
Fig. 2: Timing and severity of clinically significant AEs in response to CH53489 challenge.
Fig. 3: Timing and magnitude of clinical laboratory abnormalities following CH53489 challenge.
Fig. 4: Kinetics and specificity of DENV-3-specific immunity elicited by CH53489 challenge.
Fig. 5: Kinetics and composition of DENV-3 elicited inflammation.
Fig. 6: Correlation analysis of a selection virologic, clinical and immunologic features post-CH53489 challenge.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study, including participant-level source data, are available within this article, in its Supplementary Information files or in a publicly accessible database. RNAseq gene expression data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (GEO GSE216328). The DENV strain used for this study was made available by the US Army Medical Research and Development Command under a material transfer agreement with the SUNY–UMU and SUNY Research Foundation. Requests for the challenge strain should be addressed to the US Army Medical Research and Development Command (heather.l.friberg-robertson.civ@health.mil). Please anticipate a response within 2 weeks.

References

  1. Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shepard, D. S., Coudeville, L., Halasa, Y. A., Zambrano, B. & Dayan, G. H. Economic impact of dengue illness in the Americas. Am. J. Trop. Med. Hyg. 84, 200–207 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Guzman, M. G., Gubler, D. J., Izquierdo, A., Martinez, E. & Halstead, S. B. Dengue infection. Nat. Rev. Dis. Primers 2, 16055 (2016).

    Article  PubMed  Google Scholar 

  4. Gubler, D. J. Aedes aegypti and Aedes aegypti-borne disease control in the 1990s: top down or bottom up. Charles Franklin Craig lecture. Am. J. Trop. Med. Hyg. 40, 571–578 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Iwamura, T., Guzman-Holst, A. & Murray, K. A. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat. Commun. 11, 2130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Facts sheet Dengue. World Mosquito Program https://www.worldmosquitoprogram.org/sites/default/files/2020-11/WMP%20dengue_0.pdf (2022).

  7. Anderson, K. B. et al. A shorter time interval between first and second dengue infections is associated with protection from clinical illness in a school-based cohort in Thailand. J. Infect. Dis. 209, 360–368 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Montoya, M. et al. Symptomatic versus inapparent outcome in repeat dengue virus infections is influenced by the time interval between infections and study year. PLoS Negl. Trop. Dis. 7, e2357 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Guzman, M. G., Alvarez, M. & Halstead, S. B. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol. 158, 1445–1459 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Rajapakse, S., de Silva, N. L., Weeratunga, P., Rodrigo, C. & Fernando, S. D. Prophylactic and therapeutic interventions for bleeding in dengue: a systematic review. Trans. R. Soc. Trop. Med. Hyg. 111, 433–439 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Wong, J. G., Thein, T. L., Leo, Y. S., Pang, J. & Lye, D. C. Identifying adult dengue patients at low risk for clinically significant bleeding. PLoS ONE 11, e0148579 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Capeding, M. R. et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 384, 1358–1365 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Villar, L. et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 372, 113–123 (2015).

    Article  PubMed  Google Scholar 

  14. World Health, O. Dengue vaccine: WHO position paper, July 2016—recommendations. Vaccine 35, 1200–1201 (2017).

    Article  Google Scholar 

  15. Biswal, S. et al. Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. N. Engl. J. Med. 381, 2009–2019 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Biswal, S. et al. Efficacy of a tetravalent dengue vaccine in healthy children aged 4-16 years: a randomised, placebo-controlled, phase 3 trial. Lancet 395, 1423–1433 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Takeda’s QDENGA (dengue tetravalent vaccine (live, attenuated)) approved in Indonesia for use regardless of prior dengue exposure. Takeda https://www.takeda.com/newsroom/newsreleases/2022/takedas-qdenga-dengue-tetravalentvaccine-live-attenuated-approved-in-indonesia-for-useregardless-of-prior-dengue-exposure/ (2022).

  18. Thomas, S. J. & Endy, T. P. Current issues in dengue vaccination. Curr. Opin. Infect. Dis. 26, 429–434 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Low, J. G., Ooi, E. E. & Vasudevan, S. G. Current status of dengue therapeutics research and development. J. Infect. Dis. 215, S96–S102 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thomas, S. J. Is new dengue vaccine efficacy data a relief or cause for concern? NPJ Vaccines 8, 55 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Endy, T. P. et al. A phase 1, open-label assessment of a dengue virus-1 live virus human challenge strain. J. Infect. Dis. 223, 258–267 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Mammen, M. P. et al. Evaluation of dengue virus strains for human challenge studies. Vaccine 32, 1488–1494 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Sun, W. et al. Experimental dengue virus challenge of human subjects previously vaccinated with live attenuated tetravalent dengue vaccines. J. Infect. Dis. 207, 700–708 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Waickman, A. T. et al. Evolution of inflammation and immunity in a dengue virus 1 human infection model. Sci. Transl. Med. 14, eabo5019 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Waickman, A. T. et al. Transcriptional and clonal characterization of B cell plasmablast diversity following primary and secondary natural DENV infection. EBioMedicine 54, 102733 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kirkpatrick, B. D. et al. The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Sci. Transl. Med. 8, 330ra336 (2016).

    Article  Google Scholar 

  27. Hou, R. et al. The innate immune response following multivalent dengue vaccination and implications for protection against dengue challenge. JCI Insight https://doi.org/10.1172/jci.insight.157811 (2022).

  28. Nivarthi, U. K. et al. Longitudinal analysis of acute and convalescent B cell responses in a human primary dengue serotype 2 infection model. EBioMedicine 41, 465–478 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hanley, J. P. et al. Immunotranscriptomic profiling the acute and clearance phases of a human challenge dengue virus serotype 2 infection model. Nat. Commun. 12, 3054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sabin, A. B. Research on dengue during World War II. Am. J. Trop. Med. Hyg. 1, 30–50 (1952).

    Article  CAS  PubMed  Google Scholar 

  31. McCracken, M. K. et al. Route of inoculation and mosquito vector exposure modulate dengue virus replication kinetics and immune responses in rhesus macaques. PLoS Negl.Trop. Dis. 14, e0008191 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dengue 3 human infection model (DENV-3). ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04298138 (2022).

  33. Houng, H. S., Chung-Ming Chen, R., Vaughn, D. W. & Kanesa-thasan, N. Development of a fluorogenic RT–PCR system for quantitative identification of dengue virus serotypes 1–4 using conserved and serotype-specific 3′ noncoding sequences. J. Virol. Methods 95, 19–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Kraus, A. A., Messer, W., Haymore, L. B. & de Silva, A. M. Comparison of plaque- and flow cytometry-based methods for measuring dengue virus neutralization. J. Clin. Microbiol. 45, 3777–3780 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. de Alwis, R. et al. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc. Natl Acad. Sci. USA 109, 7439–7444 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Berry, A. S. F. et al. An open-source toolkit to expand bioinformatics training in infectious diseases. mBio 12, e0121421 (2021).

    Article  PubMed  Google Scholar 

  37. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Erratum: near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 888 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015).

    Article  PubMed  Google Scholar 

  39. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30, 523–530 (2014).

    Article  PubMed  Google Scholar 

  43. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Bolotin, D. A. et al. Antigen receptor repertoire profiling from RNA-seq data. Nat. Biotechnol. 35, 908–911 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, D. W. et al. BRILIA: integrated tool for high-throughput annotation and lineage tree assembly of B-cell repertoires. Front. Immunol. 7, 681 (2016).

    PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge excellent technical assistance provided by K. Gentile of the UMU Molecular Analysis Core, L. Phelps of the SUNY–UMU Flow Cytometry Core, H. Chanatry and the members of the Institute for Global Health and Translational Science of SUNY–UMU. We also acknowledge C. Rooney from the US Army. We also wish to thank all the study participants for making this study possible. The following reagents were obtained through BEI Resources, NIAID, NIH: Peptide Array, DENV-3 Sleman/1978, E protein (NR-511), DENV-3 Philippines/H87/1956, E protein (NR-9228), DENV-3 Philippines/H87/1956, NS1 protein (NR-2753), DENV-3 Philippines/H87/1956, NS3 protein (NR-2754), DENV-3 Philippines/H87/1956 and NS5 protein (NR-4204). The opinions or assertions contained herein are the private views of the authors and are not to be construed as reflecting the official views of the US Army or the US Department of Defense. Material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The investigators have adhered to the policies for protection of human participants as prescribed in AR 70-25. The sponsor was involved in the design and conduct of the study and in the collection, management, analysis and interpretation of the data. All authors had full access to the data in the study. Funding: funding for this research was provided by the Department of Defense, Medical Research and Material Command, the Military Infectious Disease Research Program (S.J.T. and T.P.E.) and the State of New York (A.T.W.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: L.A.W., M.D.K., R.G.J., T.P.E. and S.J.T. Formal analysis: L.A.W. and A.T.W. Funding acquisition: H.F, R.G.J., T.P.E. and S.J.T. Investigation: A.T.W., J.Q.L., K.N., H.S.F., M.W., C.G., M.D.K., L.A.W., T.P.E. and S.J.T. Resources: H.F., R.G.J. and J.R.C. Visualization: K.N. and A.T.W. Writing—original draft: A.T.W. and S.J.T. Writing—review and editing: all authors.

Corresponding authors

Correspondence to Adam T. Waickman or Stephen J. Thomas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Anna Durbin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 NS1 opsonization assay.

a) Sequence and annotation of the DENV-3 NS1 expression construct used in this study. Yellow = signal peptide, green = NS1, blue = NS2A. b) Anti-NS1 staining mAb staining (clone FE8) of parental CEM.NKR cell line and DENV-3 NS1 expressing CEM.NKR cells. Unstained cells shown in blue, FE8 stained shown in red c) Representative NS1 opsonizing activity of serum collected at days 0, 24, and 90 days post DENV-3 challenge. Unstained cells shown in blue, serum stained shown in red.

Source data

Extended Data Fig. 2 DENV serology day 90 post challenge.

a) Quantification of DENV-1, −2, −3 and −4 E binding IgG antibody levels on day 90 post challenge using a multiplex antigen array. b) Quantification of DENV-1, −2, −3 and −4 E neutralizing antibody titers on 90 post challenge by FlowNT. * p < 0.05 paired one-way ANOVA with correction for multiple comparisons. Data are presented as mean values +/- SEM. n = 9 biologically independent samples.

Source data

Extended Data Fig. 3

Representative IFN-γ ELISPOT images.

Extended Data Fig. 4 Gene module identification from RNA-seq data.

Identification of gene modules with coordinated expression changes following DENV-3 challenge. a) Gene modules identified performing differential gene expression analysis between A) days 0 and 6 post infection, b) days 0 and 8 post infection, c) days 0 and 10 post infection, and d) days 0 and 14 post infection.

Extended Data Fig. 5 Select extended correlation analysis.

Correlation analysis between peak virama titers and T cell responses day 90 post infection. Relationship between peak viremia and a) DENV-3 E protein ELISPOT readout, b) DENV-3 NS1 protein ELISPOT readout, c) DENV-3 NS3 protein ELISPOT readout, d) DENV-3 NS5 protein ELISPOT readout on day 90 post.

Source data

Extended Data Table 1 Study demographics

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Tables 1–6.

Reporting Summary

Peer Review File

Supplementary Data 1

RNAseq differential gene expression data.

Supplementary Data 2

Study protocol.

Source data

Source Data

Statistical source data for Figs. 1–6 and Extended Figs. 1–2 and 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waickman, A.T., Newell, K., Lu, J.Q. et al. Low-dose dengue virus 3 human challenge model: a phase 1 open-label study. Nat Microbiol (2024). https://doi.org/10.1038/s41564-024-01668-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41564-024-01668-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing