Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expanded phylogeny of extremely halophilic archaea shows multiple independent adaptations to hypersaline environments

Abstract

Extremely halophilic archaea (Haloarchaea, Nanohaloarchaeota, Methanonatronarchaeia and Halarchaeoplasmatales) thrive in saturating salt concentrations where they must maintain osmotic equilibrium with their environment. The evolutionary history of adaptations enabling salt tolerance remains poorly understood, in particular because the phylogeny of several lineages is conflicting. Here we present a resolved phylogeny of extremely halophilic archaea obtained using improved taxon sampling and state-of-the-art phylogenetic approaches designed to cope with the strong compositional biases of their proteomes. We describe two uncultured lineages, Afararchaeaceae and Asbonarchaeaceae, which break the long branches at the base of Haloarchaea and Nanohaloarchaeota, respectively. We obtained 13 metagenome-assembled genomes (MAGs) of these archaea from metagenomes of hypersaline aquatic systems of the Danakil Depression (Ethiopia). Our phylogenomic analyses including these taxa show that at least four independent adaptations to extreme halophily occurred during archaeal evolution. Gene-tree/species-tree reconciliation suggests that gene duplication and horizontal gene transfer played an important role in this process, for example, by spreading key genes (such as those encoding potassium transporters) across extremely halophilic lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogenetic position and metabolic potential of the families Afararchaeaceae and Asbonarchaeaceae.
Fig. 2: Protein amino acid compositional biases in extremely halophilic archaeal lineages.
Fig. 3: Maximum likelihood phylogeny of archaea, including the Afararchaeaceae and Asbonarchaeaceae.
Fig. 4: Schematic representation of the tree reconciliation analysis based on the NM species tree.

Similar content being viewed by others

Data availability

The MAGs reported in this study have been deposited in GenBank under BioProject number PRJNA901412. All raw data underlying phylogenomic analyses (raw and processed alignments and corresponding phylogenetic trees) and all predicted proteomes have been deposited in Figshare (https://figshare.com/s/353259800b42a4e190eb). Additional data were obtained from public databases, including GTDB (https://gtdb.ecogenomic.org/), Pfam (http://pfam.xfam.org/), COG (https://www.ncbi.nlm.nih.gov/research/cog), RefSeq (https://www.ncbi.nlm.nih.gov/refseq/), eggNOG (http://eggnog5.embl.de/#/app/home), the Genomic Catalog of Earth’s Microbiomes (https://genome.jgi.doe.gov/portal/GEMs/GEMs.home.html), the Global Microbial Gene Catalog (https://gmgc.embl.de/), the Unified Human Gastrointestinal Genome collection (http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/), the Ocean Microbiomics Database (https://microbiomics.io/ocean/) and PDB (https://www.rcsb.org/).

Code availability

Custom code used for data analysis is available on GitHub at https://github.com/bbaker567/phylogenetics.

References

  1. Oren, A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28, 56–63 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Oren, A. Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol. Ecol. 39, 1–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Narasingarao, P. et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 6, 81–93 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Ghai, R. et al. New abundant microbial groups in aquatic hypersaline environments. Sci. Rep. 1, 135 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhao, D. et al. Comparative genomic insights into the evolution of Halobacteria-associated ‘Candidatus Nanohaloarchaeota’. mSystems 7, e0066922 (2022).

    Article  PubMed  Google Scholar 

  6. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Sorokin, D. Y. et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2, 17081 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aouad, M., Borrel, G., Brochier-Armanet, C. & Gribaldo, S. Evolutionary placement of Methanonatronarchaeia. Nat. Microbiol. 4, 558–559 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Feng, Y. et al. The evolutionary origins of extreme halophilic archaeal lineages. Genome Biol. Evol. 13, evab166 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Martijn, J. et al. Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition. Nat. Commun. 11, 5490 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sorokin, D. Y. et al. Reply to ‘Evolutionary placement of Methanonatronarchaeia’. Nat. Microbiol. 4, 560–561 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, H. et al. Metagenomic insights into the environmental adaptation and metabolism of Candidatus Haloplasmatales, one archaeal order thriving in saline lakes. Environ. Microbiol. 24, 2239–2258 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Oren, A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst. 4, 2 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fukuchi, S., Yoshimune, K., Wakayama, M., Moriguchi, M. & Nishikawa, K. Unique amino acid composition of proteins in halophilic bacteria. J. Mol. Biol. 327, 347–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Lanyi, J. K. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev. 38, 272–290 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Madern, D., Ebel, C. & Zaccai, G. Halophilic adaptation of enzymes. Extremophiles 4, 91–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Tadeo, X. et al. Structural basis for the amino acid composition of proteins from halophilic archea. PLoS Biol. 7, e1000257 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Petitjean, C., Deschamps, P., López-García, P., Moreira, D. & Brochier-Armanet, C. Extending the conserved phylogenetic core of Archaea disentangles the evolution of the third domain of life. Mol. Biol. Evol. 32, 1242–1254 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Dombrowski, N., Lee, J.-H., Williams, T. A., Offre, P. & Spang, A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol. Lett. 366, fnz008 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Belilla, J. et al. Archaeal overdominance close to life-limiting conditions in geothermally influenced hypersaline lakes at the Danakil Depression, Ethiopia. Environ. Microbiol. 23, 7168–7182 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Belilla, J. et al. Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat. Ecol. Evol. 3, 1552–1561 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Falb, M. et al. Metabolism of halophilic archaea. Extremophiles 12, 177–196 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Albers, S.-V. & Jarrell, K. F. The archaellum: how Archaea swim. Front. Microbiol. 6, 23 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sasaki, J. & Spudich, J. L. Signal transfer in haloarchaeal sensory rhodopsin – transducer complexes. Photochem. Photobiol. 84, 863–868 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Dassarma, S. et al. Genomic perspective on the photobiology of Halobacterium species NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon. Photosynth. Res. 70, 3–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).

    Article  CAS  Google Scholar 

  28. Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 20, 1203–1212 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc. Natl Acad. Sci. USA 116, 14661–14670 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. La Cono, V. et al. Symbiosis between nanohaloarchaeon and haloarchaeon is based on utilization of different polysaccharides. Proc. Natl Acad. Sci. USA 117, 20223–20234 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodríguez del Río, Á. et al. Functional and evolutionary significance of unknown genes from uncultivated taxa. Nature 626, 377–384 (2024).

  36. Cabello-Yeves, P. J. & Rodriguez-Valera, F. Marine–freshwater prokaryotic transitions require extensive changes in the predicted proteome. Microbiome 7, 117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rasmussen, T. How do mechanosensitive channels sense membrane tension? Biochem. Soc. Trans. 44, 1019–1025 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Petitjean, C., Deschamps, P., López-García, P. & Moreira, D. Rooting the Domain Archaea by phylogenomic analysis supports the foundation of the new Kingdom Proteoarchaeota. Genome Biol. Evol. 7, 191–204 (2015).

    Article  Google Scholar 

  39. Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992–999 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bergsten, J. A review of long-branch attraction. Cladistics 21, 163–193 (2005).

    Article  PubMed  Google Scholar 

  41. Susko, E. & Roger, A. J. Long branch attraction biases in phylogenetics. Syst. Biol. 70, 838–843 (2021).

    Article  PubMed  Google Scholar 

  42. Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).

    Article  PubMed  Google Scholar 

  43. Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 6, 253–262 (2022).

    Article  PubMed  Google Scholar 

  44. Aouad, M. et al. Extreme halophilic archaea derive from two distinct methanogen Class II lineages. Mol. Phylogenet. Evol. 127, 46–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Mahendrarajah, T. A. et al. ATP synthase evolution on a cross-braced dated tree of life. Nat. Commun. 14, 7456 (2023).

  46. Kellner, S. et al. Genome size evolution in the Archaea. Emerg. Top. Life Sci. 2, 595–605 (2018).

  47. Brehmer, D., Gässler, C., Rist, W., Mayer, M. P. & Bukau, B. Influence of GrpE on DnaK–substrate interactions. J. Biol. Chem. 279, 27957–27964 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. USA 114, E4602–E4611 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Giovannoni, S. J. et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl Acad. Sci. USA 110, 11463–11468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martin-Cuadrado, A.-B., Ghai, R., Gonzaga, A. & Rodriguez-Valera, F. CO Dehydrogenase genes found in metagenomic fosmid clones from the deep Mediterranean Sea. Appl. Environ. Microbiol. 75, 7436–7444 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Becker, E. A. et al. Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. PLoS Genet. 10, e1004784 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Groussin, M. et al. Gene acquisitions from Bacteria at the origins of major archaeal clades are vastly overestimated. Mol. Biol. Evol. 33, 305–310 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc. Natl Acad. Sci. USA 109, 20537–20542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nelson-Sathi, S. et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517, 77–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Gadda, G. & McAllister-Wilkins, E. E. Cloning, expression, and purification of choline dehydrogenase from the moderate halophile Halomonas elongata. Appl. Environ. Microbiol. 69, 2126–2132 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Deschamps, P., Zivanovic, Y., Moreira, D., Rodriguez-Valera, F. & López-García, P. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic Thaumarchaeota and Euryarchaeota. Genome Biol. Evol. 6, 1549–1563 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hedlund, B. P. et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat. Microbiol. 7, 1702–1708 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rodriguez-R, L. M. & Konstantinidis, K. T. Bypassing cultivation to identify bacterial species: culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe Mag. 9, 111–118 (2014).

    Article  Google Scholar 

  62. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Coelho, L. P. et al. Towards the biogeography of prokaryotic genes. Nature 601, 252–256 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).

  73. Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lartillot, N. PhyloBayes: Bayesian phylogenetics using site-heterogeneous models. in Phylogenetics in the Genomic Era (eds Scornavacca, C. et al.) 1.5:1–1.5:16 (HAL Open Science, 2020).

  80. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

  81. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Klein, D. J., Moore, P. B. & Steitz, T. A. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J. Mol. Biol. 340, 141–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Greber, B. J. et al. Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution. J. Mol. Biol. 418, 145–160 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Szöllősi, G. J., Rosikiewicz, W., Boussau, B., Tannier, E. & Daubin, V. Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62, 901–912 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.M. and L.E were supported by grants from the European Research Council (ERC Advanced grant 787904 and ERC Starting grant 803151, respectively). This work was also supported by the Moore-Simons Project Call on the Origin of the Eukaryotic Cell, Simons Foundation 812811 (A.J.R, E.S. and L.E.), Moore Foundation GBMF9739 (P.L.-G.), and ANR DArchFolds ANR-22-CE02-0012-02 (D.M., P.L.-G. and L.E.). A.R.d.R. was supported by ‘la Caixa’ Foundation (ID 100010434, fellowship code LCF/BQ/DI18/11660009, the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No. 713673) and by an EMBO Scientific Exchange Grant. We thank P. Deschamps for help in managing our bioinformatic cluster; A. Oren for advice on taxonomic descriptions; and the Iris Foundation for the continuous support of our work on the microbial diversity of the Danakil Depression.

Author information

Authors and Affiliations

Authors

Contributions

D.M., P.L.-G. and L.E. designed the study. A.G.-P. and B.A.B. annotated the archaeal MAGs. A.R.d.R., B.A.B. and J.H.-C. studied the protein families. C.G.P.M., A.J.R. and E.S. conceived the binomial methods to identify significant shifts in amino acid composition, and E.S. implemented the changes of the GFmix model in the GFmix software. B.A.B., L.E., D.M., C.G.P.M., A.J.R. and E.S. carried out phylogenetic analyses. B.A.B., L.E., P.L.-G. and D.M. wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Laura Eme or David Moreira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Aharon Oren, Tom Williams and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic tree showing the phylogenetic position of extremely halophilic archaeal groups (colored branches) proposed in previous articles.

Branches that have been found at different places in the tree of archaea are indicated with dashed lines (Narasingarao et al. 20123, Rinke et al. 20136, Sorokin et al. 20177, Aouad et al. 201844, Aouad et al. 20198, Martijn et al. 202010).

Extended Data Fig. 2 Number and isoelectric point of novel gene families identified in the Asbonarchaeaceae and Afararchaeaceae MAGs.

(a) The average number of novel genes in the nine asbonarchaeal and four afarachaeal MAGs described in this study. Data are represented as boxplots where the middle line is the median, the lower and upper hinges correspond to the first and third quartiles, the upper whisker extends from the hinge to the largest value no further than 1.5 × IQR from the hinge (where IQR is the interquartile range) and the lower whisker extends from the hinge to the smallest value at most 1.5 × IQR of the hinge, while data beyond the end of the whiskers are outlying points that are plotted individually. (b) The isoelectric point of these novel proteins (solid lines) compared to the average isoelectric point of the whole proteomes (dashed lines).

Extended Data Fig. 3 Maximum likelihood phylogeny of 192 archaea based on the NM dataset.

The ML tree was inferred with the LG + C60 + F + Γ4 model of sequence evolution with 1,000 ultrafast bootstraps as implemented via IQ-TREE. The scale bar indicates the expected average number of substitutions per site. Extremely halophilic archaea are indicated in color.

Extended Data Fig. 4 Maximum likelihood phylogeny of 192 archaea based on the RP dataset.

The ML tree was inferred with the LG + C60 + F + Γ4 model of sequence evolution with 1,000 ultrafast bootstraps as implemented via IQ-TREE. The scale bar indicates the expected average number of substitutions per site. Extremely halophilic archaea are indicated in color.

Extended Data Fig. 5 Halophilic-specific amino acid compositional biases along the phylogeny of 192 archaeal taxa.

(a) The ratio of [D + E/I + K] amino acids of 192 archaeal taxa was calculated along the untreated NM and RP alignments (39,385 and 6,792 amino acid positions, respectively). (b) 10% of the most biased sites (that is, those with the highest ratio) were removed from the NM and RP alignments. Distinct halophilic clades are indicated in color, including the Nanosalinaceae (sand), Asbonarchaeaceae (wine), Halarchaeoplasmatales (cyan), Methanonatronarchaeia (rose), Afarachaeaceae (green), and Haloarchaea (indigo). The scale bar indicates the expected average number of substitutions per site.

Extended Data Fig. 6 Impact of compositional bias on the phylogeny of archaeal ATP synthase.

Maximum likelihood phylogenetic trees based on the concatenation of ATP synthase subunits A and B (a) before and (b) after removal of 15% of sites with the highest D + E/I + K ratio. Notice the shift in the position of the Nanosalinaceae+Asbonarchaeaceae group. The trees were reconstructed using the LG + C60 + F + Γ4 model of sequence evolution. Numbers at branches indicate 1,000 ultrafast bootstrap support values. Only values > 70% are indicated. The scale bar indicates the expected average number of substitutions per site. (c) D + E/I + K ratio for all sites in the ATP synthase subunits A and B dataset ordered from highest to lowest values.

Extended Data Fig. 7 Heat map of the number of gene duplications, transfers, originations, and losses in various archaeal halophilic lineages according to their COG classification.

The counts were obtained using the amalgamated likelihood estimation (ALE) tree reconciliation method on the set of 17,288 orthologous genes present in the 192-taxa genomic dataset for several nodes within the (a) Euryarchaeota and the (b) DPANN archaea (see Methods). Node numbers correspond to the nodes in the complete tree shown in Supplementary Fig. 18.

Extended Data Fig. 8 Maximum likelihood trees showing cases of horizontal gene transfer involving archaeal halophilic lineages.

(a) NhaP-type Na + /H+ and K + /H+ antiporters. (b) choline dehydrogenase BetA. The trees were constructed with the LG + C60 + F + Γ4 model of sequence evolution. Dashed branches have been shortened to half of their actual length. The scale bar indicates the expected average number of substitutions per site.

Supplementary information

Supplementary Information

Supplementary Figs. 1–41.

Reporting Summary

Supplementary Video 1

Comparison of acidic (D + E) versus hydrophobic (I + K) amino acids on the large ribosomal subunits of Haloarcula marismortui and Methanothermococcus thermautotrophicus.

Supplementary Table 1

Genome statistics for the Afararchaeaceae, Asbonarchaeaceae and Chewarchaeaceae MAGs. The location of the lakes where the MAGs came from, the completeness and redundancy, the %GC, estimated genome size, number of contigs and the N50 are included. Supplementary Table 2 Average amino acid identity (AAI), average nucleotide identity (ANI), and RED values for the Afararchaeaceae and Asbonarchaeaceae MAGs. Supplementary Table 3 Major biosynthetic pathways identified in the most complete afararchaeal MAG (DAL-WCL_na_97C3R). Supplementary Table 4 Major biosynthetic pathways identified in the most complete asbonarchaeal MAG (DAL-WCL_45_84C1R). Supplementary Table 5 Novel gene families identified in the Afararchaeaceae MAGs. A link to a graphical interface is provided to explore the synteny and neighbourhood of the novel gene families. Supplementary Table 6 Novel gene families identified in the Asbonarchaeaceae MAGs. A link to a graphical interface is provided to explore the synteny and neighbourhood of the novel gene families. Supplementary Table 7 Gene annotations for the 136 NM dataset markers based on predictions from eggNOG-mapper. Supplementary Table 8 Proteomes used for phylogenomic datasets and gene family clustering. Taxonomy, assembly characteristics and source databases are listed for all taxa included in the species trees. Metadata information was collected from GTDB r207. Supplementary Table 9 Gene annotations of orthologous groups (OGs) specifically mentioned in the ALE analysis section. For each OG, the raw relative frequencies of the duplication, transfer, origination and loss events are reported, as well as the presence probability in the halophilic nodes of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, B.A., Gutiérrez-Preciado, A., Rodríguez del Río, Á. et al. Expanded phylogeny of extremely halophilic archaea shows multiple independent adaptations to hypersaline environments. Nat Microbiol 9, 964–975 (2024). https://doi.org/10.1038/s41564-024-01647-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-024-01647-4

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology