Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteins containing photosynthetic reaction centre domains modulate FtsZ-based archaeal cell division

Abstract

Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2. Depletions and deletions in their respective genes cause severe cell division defects, generating drastically enlarged cells. Fluorescence microscopy of tagged FtsZ1, FtsZ2 and SepF in CdpB1 and CdpB2 mutant strains revealed an unusually disordered divisome that is not organized into a distinct ring-like structure. Biochemical analysis shows that SepF forms a tripartite complex with CdpB1/2 and crystal structures suggest that these two proteins might form filaments, possibly aligning SepF and the FtsZ2 ring during cell division. Overall our results indicate that PRC-domain proteins play essential roles in FtsZ-based cell division in Archaea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular positioning of PRC-barrel proteins CdpB1 and CdpB2 and their co-localization with divisome protein SepF.
Fig. 2: Effect of CdpB1 depletion and CdpB2 deletion on cell shape and the positioning of cell division proteins.
Fig. 3: CdpB1 and CdpB2 localization during SepF depletion.
Fig. 4: Biochemical analysis of CdpB1, CdpB2 and SepF from A. fulgidus.
Fig. 5: Crystal structure of the CdpB1–CdpB2 complex and cryo-EM with SepF and liposomes.
Fig. 6: Model for CdpB1/B2 function in Euryarchaeota.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Source Data. Source data are provided with this paper. Coordinates have been submitted to the Protein Data Bank (PDB) with accession code 8QZO.

References

  1. Mahone, C. R. & Goley, E. D. Bacterial cell division at a glance. J. Cell Sci. 133, jcs237057 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andrade, V. & Echard, A. Mechanics and regulation of cytokinetic abscission. Front. Cell Dev. Biol. 10, 1046617 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nat. Rev. Microbiol. 8, 731–741 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ithurbide, S., Gribaldo, S., Albers, S.-V. & Pende, N. Spotlight on FtsZ-based cell division in Archaea. Trends Microbiol. 30, 665–678 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Makarova, K. S. & Koonin, E. V. Two new families of the FtsZ-tubulin protein superfamily implicated in membrane remodeling in diverse bacteria and archaea. Biol. Direct 5, 33 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liao, Y., Ithurbide, S., Evenhuis, C., Löwe, J. & Duggin, I. G. Cell division in the archaeon Haloferax volcanii relies on two FtsZ proteins with distinct functions in division ring assembly and constriction. Nat. Microbiol. 6, 594–605 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pende, N. et al. SepF is the FtsZ-anchor in archaea, with features of an ancestral cell division system. Nat. Commun. https://doi.org/10.1038/s41467-021-23099-8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nußbaum, P., Gerstner, M., Dingethal, M., Erb, C. & Albers, S. V. The archaeal protein SepF is essential for cell division in Haloferax volcanii. Nat. Commun. 12, 3469 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Anantharaman, V. & Aravind, L. The PRC-barrel: a widespread, conserved domain shared by photosynthetic reaction center subunits and proteins of RNA metabolism. Genome Biol. 3, RESEARCH0061 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Patro, M., Duggin, I. G., Albers, S.-V. & Ithurbide, S. Influence of plasmids, selection markers and auxotrophic mutations on Haloferax volcanii cell shape plasticity. Front. Microbiol. 14, 1270665 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li, Z. et al. Positioning of the motility machinery in halophilic Archaea. mBio 10, e00377-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ye, H. et al. Crystal structure of the putative adapter protein MTH1859. J. Struct. Biol. 148, 251–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Król, E. et al. Bacillus subtilis SepF binds to the C terminus of FtsZ. PLoS ONE 7, e43293 (2012).

    Article  ADS  Google Scholar 

  14. Sogues, A. et al. Essential dynamic interdependence of FtsZ and SepF for Z-ring and septum formation in Corynebacterium glutamicum. Nat. Commun. 11, 1641 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duman, R. et al. Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. Proc. Natl Acad. Sci. USA 110, E4601–E4610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wenzel, M. et al. Control of septum thickness by the curvature of SepF polymers. Proc. Natl Acad. Sci. USA 118, e2002635118 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Du, S. & Lutkenhaus, J. Assembly and activation of the Escherichia coli divisome. Mol. Microbiol. 105, 177–187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Errington, J. & Wu, L. J. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 67–101 (Springer, 2017); https://doi.org/10.1007/978-3-319-53047-5_3

  20. Abdul-Halim, M. F. et al. Lipid anchoring of archaeosortase substrates and mid-cell growth in Haloarchaea. mBio 11, 863746 (2020).

    Article  Google Scholar 

  21. Blanch Jover, A. & Dekker, C. The archaeal Cdv cell division system. Trends Microbiol. https://doi.org/10.1016/j.tim.2022.12.006 (2023).

    Article  PubMed  Google Scholar 

  22. Moriscot, C. et al. Crenarchaeal CdvA forms double-helical filaments containing DNA and interacts with ESCRT-III-Like CdvB. PLoS ONE 6, e21921 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Samson, R. Y. et al. Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division. Mol. Cell 41, 186–196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, S. et al. Widespread PRC barrel proteins are necessary for haloarchaeal cell division. Nat Microbiol. https://doi.org/10.1038/s41564-024-01615-y (2024).

  25. Bertani, G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293–300 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Allers, T., Ngo, H.-P., Mevarech, M. & Lloyd, R. G. Development of additional selectable markers for the halophilic Archaeon Haloferax volcanii based on the leuB and trpA genes. Appl. Environ. Microbiol. 70, 943–953 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Silva, R. T. et al. Improved growth and morphological plasticity of Haloferax volcanii. Microbiology 167, 001012 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Watson, J. F. & García-Nafría, J. In vivo DNA assembly using common laboratory bacteria: a re-emerging tool to simplify molecular cloning. J. Biol. Chem. 294, 15271–15281 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Braun, F. et al. Cyclic nucleotides in archaea: cyclic di-AMP in the archaeon Haloferax volcanii and its putative role. MicrobiologyOpen 8, e00829 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 16077 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lau, Y.-T. K. et al. Discovery and engineering of enhanced SUMO protease enzymes. J. Biol. Chem. 293, 13224–13233 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gorrec, F. & Löwe, J. Automated protocols for macromolecular crystallization at the MRC Laboratory of Molecular Biology. J. Vis. Exp. https://doi.org/10.3791/55790 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D 67, 293–302 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vonrhein, C. et al. Advances in automated data analysis and processing within autoPROC, combined with improved characterisation, mitigation and visualisation of the anisotropy of diffraction limits using STARANISO. Acta Crystallogr. A 74, a360–a360 (2018).

    Article  Google Scholar 

  36. McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C. & Read, R. J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D 61, 458–464 (2005).

    Article  ADS  PubMed  Google Scholar 

  37. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article  ADS  CAS  Google Scholar 

  42. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Schrödinger, L. & DeLano, W. The PyMOL Molecular Graphics System (Delano Scientific, 2020).

  44. Albers, S. V., Konings, W. N. & Driessen, A. J. in Methods in Microbiology: Extremophiles, Vol. 35 (eds Rainey, F. A. & Oren, A.) 161–171 (Academic Press, 2006).

  45. Scheres, S. H. W. A Bayesian view on Cryo-EM structure determination. J. Mol. Biol. 415, 406–418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinf. 11, 431 (2010).

    Article  Google Scholar 

  48. Garcia, P. S., Gribaldo, S. & Borrel, G. Diversity and evolution of methane-related pathways in Archaea. Annu. Rev. Microbiol. 76, 727–755 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v.4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank X. Ye (ISTA) for providing the His–SUMO expression plasmid pSVA13429. pCDB302 was a gift from C. Bahl (Addgene plasmid number 113673; http://n2t.net/addgene:113673; RRID Addgene_113673). We thank B. Ahsan, G. Sharov, G. Cannone and S. Chen from the Medical Research Council (MRC) LMB Electron Microscopy Facility for help and support. We thank Scientific Computing at the MRC LMB for their support. We thank L. Trübestein and N. Krasnici of the protein service unit of the ISTA Lab Support Facility for help with the SEC coupled with multi-angle light scattering experiments. We thank D. Grohmann and R. Reichelt from the Archaea Centre at the University of Regensburg for providing the P. furiosus cell material. P.N. and S.-V.A. were supported by a Momentum grant from the Volkswagen (VW) Foundation (grant number 94933). D.K.-C. and D.B. were supported by the VW Stiftung ‘Life?’ programme (to J.L.; grant number Az 96727) and by the MRC, as part of UK Research and Innovation (UKRI), MRC file reference number U105184326 (to J.L.). N.T. and S.G. acknowledge support from the French Government’s Investissement d’Avenir program, Laboratoire d’Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant number ANR-10-LABX-62-IBEID), and the computational and storage services (Maestro cluster) provided by the IT department at Institut Pasteur. M.K. and M.L. were supported by the Austrian Science Fund (FWF) Stand-Alone P34607. For the purpose of open access, the MRC Laboratory of Molecular Biology has applied a CC BY public copyright licence to any author accepted manuscript version arising.

Author information

Authors and Affiliations

Authors

Contributions

P.N. conceived the project and performed all experiments not otherwise mentioned. C.v.d.D. purified the proteins from A. fulgidus and performed SEC experiments. M.K. expressed and purified proteins from H. volcanii and performed SEC coupled with multi-angle light scattering experiments, pelleting assays and mass photometry. D.K.-C. and D.B. solved the crystal structure. D.K.-C., A.Y. and J.L. performed cryo-EM. N.T. performed phylogenetic analysis. M.T. isolated P. furiosus lipids. P.N. and J.L. prepared figures. P.N. wrote the draft of the article. S.G., M.L., J.L. and S.-V.A. reviewed drafts of the article, supervised the work and acquired funding.

Corresponding author

Correspondence to Sonja-Verena Albers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Daniela Barilla, William Margolin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Tables 1–6.

Reporting Summary

Supplementary Video 1

Time lapse of H. volcanii expressing CdpB1–mNeonGreen.

Supplementary Video 2

Time lapse of H. volcanii expressing CdpB2–mNeonGreen.

Supplementary Video 3

Time lapse of H. volcanii expressing CdpB3–mNeonGreen.

Supplementary Video 4

Time lapse of H. volcanii during CdpB1 depletion.

Supplementary Video 5

Time lapse of H. volcanii wild type.

Supplementary Data 1

Source data for supplementary figures.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nußbaum, P., Kureisaite-Ciziene, D., Bellini, D. et al. Proteins containing photosynthetic reaction centre domains modulate FtsZ-based archaeal cell division. Nat Microbiol 9, 698–711 (2024). https://doi.org/10.1038/s41564-024-01600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-024-01600-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology