Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration

Abstract

Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme–substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Respiratory reductase orthologues are highly over-represented in three distinct lineages of gut bacteria.
Fig. 2: ‘High reductase’ gut bacteria exhibit respiratory growth properties.
Fig. 3: ‘High reductase’ gut bacteria use diverse respiratory electron acceptors.
Fig. 4: Flavin reductases are induced by their electron acceptors and exhibit relatively narrow substrate specificities.
Fig. 5: Independent evolutionary trajectories and distinct active sites distinguish flavin reductases with related electron acceptors.

Similar content being viewed by others

Data availability

The datasets generated in our study are available within the paper and Supplementary Information. Quantitative metabolomic raw data files can be found on the MassIVE repository (ID MSV000093291). Transcriptomic datasets generated in this study can be found under BioProject PRJNA1012298. Metagenomic data used in this study are publicly available on NCBI under BioProject IDs PRJNA912122 and PRJNA838648. Proteomic datasets can be accessed at https://doi.org/10.7910/DVN/OY9MPE. NCBI accession codes for studied proteins are provided in Supplementary Table 10. Source data are provided with this paper.

References

  1. Moodie, A. D. & Ingledew, W. J. Microbial anaerobic respiration. Adv. Microb. Physiol. 31, 225–269 (1990).

    CAS  PubMed  Google Scholar 

  2. Gibson, G. R., Macfarlane, G. T. & Cummings, J. H. Occurrence of sulphate‐reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J. Appl. Bacteriol. 65, 103–111 (1988).

    CAS  PubMed  Google Scholar 

  3. Smith, N. W. et al. Hydrogen cross-feeders of the human gastrointestinal tract. Gut Microbes 10, 270–288 (2019).

    CAS  PubMed  Google Scholar 

  4. Butler, N. L. et al. Bacteroides fragilis maintains concurrent capability for anaerobic and nanaerobic respiration. J. Bacteriol. 205, e0038922 (2023).

    PubMed  Google Scholar 

  5. Schubert, C. & Unden, G. C4-dicarboxylates as growth substrates and signaling molecules for commensal and pathogenic enteric bacteria in mammalian intestine. J. Bacteriol. 204, e0054521 (2022).

    PubMed  Google Scholar 

  6. Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller, B. M. et al. Anaerobic respiration of NOX1-derived hydrogen peroxide licenses bacterial growth at the colonic surface. Cell Host Microbe 28, 789–797.e5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rekdal, V. M. et al. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. eLife 9, e50845 (2020).

    CAS  Google Scholar 

  10. Ravcheev, D. A. & Thiele, I. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota. Front. Microbiol. 5, 674 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Bilous, P. T., Cole, S. T., Anderson, W. F. & Weiner, J. H. Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli. Mol. Microbiol. 2, 785–795 (1988).

    CAS  PubMed  Google Scholar 

  12. Silvestro, A., Pommier, J., Pascal, M. C. & Giordano, G. The inducible trimethylamine N-oxide reductase of Escherichia coli K12: its localization and inducers. Biochim. Biophys. Acta 999, 208–216 (1989).

    CAS  PubMed  Google Scholar 

  13. Heinzinger, N. K. et al. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J. Bacteriol. 177, 2813–2820 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hensel, M. et al. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol. Microbiol. 32, 275–287 (1999).

    CAS  PubMed  Google Scholar 

  15. Cruz-García, C. et al. Respiratory nitrate ammonification by Shewanella oneidensis MR-1. J. Bacteriol. 189, 656–662 (2007).

    PubMed  Google Scholar 

  16. Krafft, T. et al. Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. Eur. J. Biochem. 206, 503–510 (1992).

    CAS  PubMed  Google Scholar 

  17. Saltikov, C. W. & Newman, D. K. Genetic identification of a respiratory arsenate reductase. Proc. Natl Acad. Sci. USA 100, 10983–10988 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Krafft, T. et al. Cloning and sequencing of the genes encoding the periplasmic-cytochrome B-containing selenate reductase of Thauera selenatis. DNA Seq. 10, 365–377 (2000).

    CAS  PubMed  Google Scholar 

  19. Bender, K. S. et al. Identification, characterization, and classification of genes encoding perchlorate reductase. J. Bacteriol. 187, 5090–5096 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McPherson, M. J. et al. Respiratory nitrate reductase of Escherichia coli. Sequence identification of the large subunit gene. FEBS Lett. 177, 260–264 (1984).

    CAS  PubMed  Google Scholar 

  21. Lledó, B. et al. Respiratory nitrate reductase from haloarchaeon Haloferax mediterranei: biochemical and genetic analysis. Biochim. Biophys. Acta 1674, 50–59 (2004).

    PubMed  Google Scholar 

  22. Yamazaki, C. et al. A novel dimethylsulfoxide reductase family of molybdenum enzyme, Idr, is involved in iodate respiration by Pseudomonas sp. SCT. Environ. Microbiol. 22, 2196–2212 (2020).

    CAS  PubMed  Google Scholar 

  23. Cole, S. T. Nucleotide sequence coding for the flavoprotein subunit of the fumarate reductase of Escherichia coli. Eur. J. Biochem. 122, 479–484 (1982).

    CAS  PubMed  Google Scholar 

  24. Light, S. H. et al. Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria. Proc. Natl Acad. Sci. USA 116, 26892–26899 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bogachev, A. et al. Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1. Mol. Microbiol. 86, 1452–1463 (2012).

    CAS  PubMed  Google Scholar 

  26. Speich, N. et al. Adenylylsulphate reductase from the sulphate-reducing archaeon Archaeoglobus fulgidus: cloning and characterization of the genes and comparison of the enzyme with other iron-sulphur flavoproteins. Microbiology 140, 1273–1284 (1994).

    CAS  PubMed  Google Scholar 

  27. Méheust, R. et al. Post-translational flavinylation is associated with diverse extracytosolic redox functionalities throughout bacterial life. eLife 10, e66878 (2021).

    PubMed  PubMed Central  Google Scholar 

  28. Mikoulinskaia, O. et al. Cytochrome c-dependent methacrylate reductase from Geobacter sulfurreducens AM-1. Eur. J. Biochem. 263, 346–352 (1999).

    CAS  PubMed  Google Scholar 

  29. Jardim-Messeder, D. et al. Fumarate reductase superfamily: a diverse group of enzymes whose evolution is correlated to the establishment of different metabolic pathways. Mitochondrion 34, 56–66 (2017).

    CAS  PubMed  Google Scholar 

  30. Le, C. et al. Emerging chemical diversity and potential applications of enzymes in the DMSO reductase superfamily. Annu. Rev. Biochem. 91, 475–504 (2022).

    CAS  PubMed  Google Scholar 

  31. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    CAS  PubMed  Google Scholar 

  32. Wu, S. et al. GMrepo: a database of curated and consistently annotated human gut metagenomes. Nucleic Acids Res. 48, D545–D553 (2020).

    CAS  PubMed  Google Scholar 

  33. Diaz-Gerevini, G. T. et al. Beneficial action of resveratrol: how and why? Nutrition 32, 174–178 (2016).

    CAS  PubMed  Google Scholar 

  34. Bentley, R. & Haslam, E. The shikimate pathway—a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 25, 307–384 (1990).

    CAS  PubMed  Google Scholar 

  35. Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dong, X. et al. Genetic manipulation of the human gut bacterium Eggerthella lenta reveals a widespread family of transcriptional regulators. Nat. Commun. 13, 7624 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Leys, D. et al. Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1. Nat. Struct. Biol. 6, 1113–1117 (1999).

    CAS  PubMed  Google Scholar 

  38. Pankhurst, K. L. et al. A proton delivery pathway in the soluble fumarate reductase from Shewanella frigidimarina. J. Biol. Chem. 281, 20589–20597 (2006).

    CAS  PubMed  Google Scholar 

  39. Venskutonytė, R. et al. Structural characterization of the microbial enzyme urocanate reductase mediating imidazole propionate production. Nat. Commun. 12, 1347 (2021).

    PubMed  PubMed Central  Google Scholar 

  40. Heidelberg, J. F. et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20, 1118–1123 (2002).

    CAS  PubMed  Google Scholar 

  41. Hau, H. H. & Gralnick, J. A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61, 237–258 (2007).

    CAS  PubMed  Google Scholar 

  42. Ikeda, S. et al. Shewanella oneidensis MR-1 as a bacterial platform for electro-biotechnology. Essays Biochem. 65, 355–364 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Koh, A. et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961.e17 (2018).

    CAS  PubMed  Google Scholar 

  44. Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Steed, A. L. et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357, 498–502 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Koppel, N. et al. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. eLife 7, e33953 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Alexander, M. et al. Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe 30, 17–30.e9 (2022).

    CAS  PubMed  Google Scholar 

  49. Bess, E. N. et al. Genetic basis for the cooperative bioactivation of plant lignans by Eggerthella lenta and other human gut bacteria. Nat. Microbiol. 5, 56–66 (2020).

    CAS  PubMed  Google Scholar 

  50. Maini Rekdal, V. et al. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science 364, eaau6323 (2019).

    PubMed  Google Scholar 

  51. Sasikaran, J. et al. Bacterial itaconate degradation promotes pathogenicity. Nat. Chem. Biol. 10, 371–377 (2014).

    CAS  PubMed  Google Scholar 

  52. Wang, H. et al. An essential bifunctional enzyme in Mycobacterium tuberculosis for itaconate dissimilation and leucine catabolism. Proc. Natl Acad. Sci. USA 116, 15907–15913 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, T., Hasegawa, Y. & Waldor, M. K. A bile metabolite atlas reveals infection-triggered interorgan mediators of intestinal homeostasis and defense. Preprint at bioRxiv https://doi.org/10.1101/2023.03.04.531105 (2023).

  54. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res 49, D412–D419 (2021).

    CAS  PubMed  Google Scholar 

  56. Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).

    CAS  PubMed  Google Scholar 

  57. Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    CAS  PubMed  Google Scholar 

  58. Katoh, K. & Standley, D. M. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 32, 1933–1942 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. Nguyen, L.-T. et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  PubMed  Google Scholar 

  61. Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hoang, D. T. et al. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    CAS  PubMed  Google Scholar 

  63. Delmont, T. O. & Eren, A. M. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 6, e4320 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

  65. García-Villalba, R. et al. Metabolism of different dietary phenolic compounds by the urolithin-producing human-gut bacteria Gordonibacter urolithinfaciens and Ellagibacter isourolithinifaciens. Food Funct. 11, 7012–7022 (2020).

    PubMed  Google Scholar 

  66. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Odenwald, M. A. et al. Bifidobacteria metabolize lactulose to optimize gut metabolites and prevent systemic infection in patients with liver disease. Nat. Microbiol. https://doi.org/10.1038/s41564-023-01493-w (2023).

  68. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Blanco-Miguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat. Biotechnol 41, 1633–1644, https://doi.org/10.1038/s41587-023-01688-w (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    PubMed  PubMed Central  Google Scholar 

  72. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS  PubMed  Google Scholar 

  73. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. R Core Team R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2016); https://www.R-project.org/

  75. Zhang, Y., Parmigiani, G. & Johnson, W. E. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom. Bioinform. 2, lqaa078 (2020).

    PubMed  PubMed Central  Google Scholar 

  76. Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35, 2084–2092 (2019).

    CAS  PubMed  Google Scholar 

  77. Plumb, R. S. et al. UPLC/MS(E); a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun. Mass Spectrom. 20, 1989–1994 (2006).

    CAS  PubMed  Google Scholar 

  78. Shliaha, P. V. et al. Effects of traveling wave ion mobility separation on data independent acquisition in proteomics studies. J. Proteome Res. 12, 2323–2339 (2013).

    CAS  PubMed  Google Scholar 

  79. Helm, D. et al. Ion mobility tandem mass spectrometry enhances performance of bottom–up proteomics. Mol. Cell Proteom. 13, 3709–3715 (2014).

    CAS  Google Scholar 

  80. Distler, U. et al. Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nat. Methods 11, 167–170 (2014).

    CAS  PubMed  Google Scholar 

  81. Distler, U. et al. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat. Protoc. 11, 795–812 (2016).

    CAS  PubMed  Google Scholar 

  82. Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 50, D20–D26 (2022).

    CAS  PubMed  Google Scholar 

  83. Rivera-Lugo, R. et al. Distinct energy-coupling factor transporter subunits enable flavin acquisition and extracytosolic trafficking for extracellular electron transfer in Listeria monocytogenes. mBio 14, e0308522 (2023).

    PubMed  Google Scholar 

  84. Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2020).

    Google Scholar 

  85. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. https://doi.org/10.1038/nbt.3988 (2017).

  87. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Waterhouse, A. M. et al. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Lin and N. P. Dylla for assistance with data analyses and L. Comstock for helpful feedback. We thank the University of Chicago Animal Resources Center for their assistance with mouse work (RRID: SCR_021806). Research reported in this publication was supported by funding from the National Institutes of Health (T32DK007074 to M.A.O., 1S10OD020062-01 to A.T.I., and K22AI144031 and R35GM146969 to S.H.L) and the Searle Scholars Program (to S.H.L.).

Author information

Authors and Affiliations

Authors

Contributions

A.S.L., E.G.P. and S.H.L. conceptualized the project. A.S.L., I.T.Y., P.N.B., J.S., K.S. and D.S. performed the experiments. A.S.L., M.S.S., P.N.B. and S.H.L. analysed the data. A.S.L., I.T.Y., P.N.B., J.S. and K.S. performed growth assays. A.S.L. performed ATP determination assays. A.S.L. and J.S. performed protein expression and purification and reductase activity assays. M.S.S., R.M. and A.M.E. performed bioinformatic analysis, including phylogeny and pangenomes. A.S.L., R.R., R.S. and A.S. performed bioinformatics analysis of transcriptomic data. M.W.M., W.L., D.M., M.M. and A.M.S. performed and analysed mass spectrometry. A.T.I. performed and analysed proteomics data. A.S.L., P.N.B., J.S. and E.W. performed animal experiments and maintenance. M.A.O. provided human faecal samples for analysis. A.S.L. and S.H.L. wrote the paper.

Corresponding author

Correspondence to Samuel H. Light.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Emily Balskus, Chris Greening and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Distribution and identity of flavin and molybdopterin reductases in three taxonomic families.

Phylogenetic trees constructed with representative genomes from each Genome Taxonomy Database (GTDB) species in (a) Eggerthellaceae (88 genomes, 2387 amino acid sites), (b) Burkholderiaceae (1510 genomes, 2379 amino acid sites), and (c) Erysipelotrichaceae (116 genomes, 2464 amino acid sites). Each maximum likelihood tree was constructed based on a concatenated alignment of 16 ribosomal proteins under an LG + I + G4 model of evolution. The numbers of flavin (blue) and molybdopterin (red) reductases with a computationally predicted signal peptide in each genome are graphed on the outer ring of the trees. (d) Flavin reductase pangenomes of E. lenta, S. wadsworthensis, and H. filiformis. For each pangenome, the inner concentric layers represent unique genomes while the radial elements represent gene cluster presence (darker color) or absence (lighter color) across the genomes. The outermost concentric circle, ‘Max num paralogues,’ indicates the maximum number of paralogues (defined as reductases with ~60% sequence identity) one genome contributes to the gene cluster. The second outermost circle, ‘SCG clusters,’ indicates single-copy core reductase that is, gene clusters for which every genome contributed exactly one gene. Genomes (inner concentric layers) are clustered by the presence/absence of reductase gene clusters. All vs all genome average nucleotide identity is depicted in the heat map above the genome concentric layers.

Source data

Extended Data Fig. 2 E. lenta uses multiple respiratory electron acceptors.

E. lenta DSM2243 growth in formate-supplemented media provisioned with electron acceptors: (a) p-coumarate, (b) ferulate, (c) chlorogenate, (d) rosmarinate, (e) sinapate, (f) shikimate, (g) itaconate, (h) methionine sulfoxide, (i) S-methyl-L-cysteine sulfoxide, and (j) dimethyl sulfoxide. A ‘no electron acceptor’ condition and conditions with predicted reduction products are included as controls. Extracted ion chromatograms of peaks (matched to available authentic standards) in uninoculated and inoculated growth media. (A)-(D),(G)-(J) were measured by GC-MS; (E), (F) were measured by LC-MS; support for identification of hydro-shikimate in (F) is provided in Supplementary Fig. 5. Data are mean ±SD (n = 3 independent biological replicates). *p < 0.05, **p < 0.01, *** p < 0.001. Two-way ANOVA, multiple test vs media alone.

Extended Data Fig. 3 S. wadsworthensis growth-stimulating electron acceptors.

S. wadsworthensis growth in formate-supplemented media provisioned with electron acceptors: (a) labeled C4-dicarboxylates, (b) shikimate, (c) dimethyl sulfoxide, and (d) methionine sulfoxide. A ‘no electron acceptor’ condition and conditions with predicted products are included as controls. Extracted ion chromatograms of peaks (matched to available authentic standards) in uninoculated and inoculated growth media. (A) Fumarate and its succinate reduction were measured by LC-MS, the rest of (A) and (D) were measured by GC-MS; (B) was measured by LC-MS; support for identification of hydro-shikimate in (B) is provided in Supplementary Fig. 5. Data are mean ±SD (n = 3 independent biological replicates). *p < 0.05, **p < 0.01, *** p < 0.001. Two-way ANOVA, multiple test vs media alone.

Extended Data Fig. 4 H. filiformis growth-stimulating electron acceptors.

H. filiformis growth in media provisioned with electron acceptors: (a) cinnamate (b) m-coumarate, (c) p-coumarate (d) ferulate, and (e) sinapate. A ‘no electron acceptor’ condition and conditions with predicted products are included as controls. Extracted ion chromatograms of peaks (matched to available authentic standards) in uninoculated and inoculated growth media. Data are mean ±SD (n = 3 independent biological replicates). *p < 0.05, **p < 0.01, *** p < 0.001. Two-way ANOVA, multiple test vs media alone.

Extended Data Fig. 5 Electron acceptors not observed to stimulate growth.

(a) GC-MS analysis of resveratrol-spiked media before and after E. lenta DSM2243 growth and LC-MS analysis of resveratrol-spiked media before and after H. filiformis DFI.9.20 growth. The low solubility of resveratrol hindered experiments to assess whether this electron acceptor supported respiratory growth. (b) Potential modification flow for (+)-catechin and (−)-epicatechin, and GC-MS of media spiked with either (+)-catechin or (−)-epicatechin before and after E. lenta DSM2243 or S. wadsworthensis DFI.4.78 growth. (c) Resting cell suspensions of E. lenta and S. wadsworthensis in buffer supplemented with 1mM formate assayed cellular ATP concentrations after incubation with buffer alone or (−)-epicatechin, data are mean ±SD (n = 3 technical replicates). Support for identification of catechin and epicatechin derivatives in (B) is provided in Supplementary Figs. 2 and 3.

Extended Data Fig. 6 ATP generation facilitated by electron acceptors.

Resting cell suspensions of E. lenta and S. wadsworthensis in buffer supplemented with 1mM formate assayed cellular ATP concentrations after incubation with different classes of electron acceptors, (a) cinnamates, (b) C4-dicarboxylates, (c) other enolates, (d) alkenes, (e) sulfoxides, (f) catechols, and (g) electron donor-acceptor combination dependence. Data are mean ±SD (n = 3 technical replicates).

Extended Data Fig. 7 Caffeate utilization by E. lenta and tungstate inhibition of sulfoxide growth enhancement.

(a) GC-MS analysis of supernatant collected from E. lenta DSM2243 grown in caffeate-spiked media. Extracted ion chromatograms of peaks (matched to authentic standards) in uninoculated and inoculated growth media. Proposed reaction pathways are shown, with peaks for each compound provided beneath its chemical structure. The previously characterized hydrocaffeate dehydroxylase may catalyze the observed dehydroxylation reactions. The observed caffeate reduction to hydrocaffeate provides evidence of a caffeate reductase, while the accumulation of m-coumarate suggests that this enzyme may specifically use caffeate. (b) E. lenta DSM2243 growth in media supplemented with formate and different cinnamates. The pattern of cinnamate-dependent growth enhancement supports the conclusions that: (1) dehydroxylation can support respiratory growth and (2) m-coumarate is a poor electron acceptor for E. lenta. (c) The effect of the molybdopterin reductase inhibitor, tungstate, on E. lenta DSM2243 growth. Media was supplemented with formate and the noted electron acceptor, with or without the addition of tungstate. (d) Reactions catalyzed by urocanate and sulfoxide reductases. Tungstate’s selective growth inhibition is consistent with sulfoxide, but not urocanate, reduction being catalyzed by a molybdopterin reductase. Data are mean ±SD (n = 3 independent biological replicates). *p < 0.05, **p < 0.01, *** p < 0.001. Two-way ANOVA, multiple test vs media alone.

Extended Data Fig. 8 Microbiome composition of fecal samples used for metabolite measurements.

(a) Taxonomy abundance in human fecal samples used for metabolomics analyses assessed by shotgun metagenomics. (b) Taxonomy abundance in mouse fecal samples used for metabolomics analyses assessed by 16S rRNA amplicon sequencing. The Inverse Simpson measure of microbiome diversity is also presented.

Extended Data Fig. 9 Expression of recombinant reductase enzymes.

SDS-PAGE gels of reductase enzymes expressed and purified from E. coli. (a) H. filiformis enzymes, except where indicated. (b) E. lenta enzymes, except where indicated. Proteins run on a 12% acrylamide Bis-Tris gel in a MOPS running buffer, compared to PageRuler Plus prestained protein ladder (Thermo. #26619). Expected kDa for both ladder and proteins are labeled. Experiments (A, B) were repeated twice, with similar results.

Source data

Extended Data Fig. 10 Presence of irdA predicts itaconate reductase activity of E. lenta strains.

(a) Schematic diagram of itaconate reduction by IrdA, and sequence identity of the reductase with greatest similarity to IrdA is shown for indicated E. lenta strains strain. (b) Extracted ion chromatograms of authentic standard-matched methylsuccinate peaks from media collected after cultivation with the indicated strain.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–5 and references.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–14.

Source data

Source Data Fig. 1

Statistical source data, separated by tabs.

Source Data Extended Data Fig. 1

Statistical source data, separated by tabs.

Source Data Extended Data Fig. 9

Raw whole-gel images.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Little, A.S., Younker, I.T., Schechter, M.S. et al. Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration. Nat Microbiol 9, 55–69 (2024). https://doi.org/10.1038/s41564-023-01560-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01560-2

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research