Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sustainable production and degradation of plastics using microbes

Abstract

Plastics are indispensable in everyday life and industry, but the environmental impact of plastic waste on ecosystems and human health is a huge concern. Microbial biotechnology offers sustainable routes to plastic production and waste management. Bacteria and fungi can produce plastics, as well as their constituent monomers, from renewable biomass, such as crops, agricultural residues, wood and organic waste. Bacteria and fungi can also degrade plastics. We review state-of-the-art microbial technologies for sustainable production and degradation of bio-based plastics and highlight the potential contributions of microorganisms to a circular economy for plastics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Life cycle of plastics produced using microbial biotechnologies.
Fig. 2: Representative metabolic map for the production of bioplastics.
Fig. 3: Strategies for bioplastic production.
Fig. 4: Degradation of plastics by microbes.

Similar content being viewed by others

References

  1. Global Plastics Outlook: Policy Scenarios to 2060 (OECD Publishing, 2022).

  2. The New Plastics Economy—Rethinking the Future of Plastics (World Economic Forum, 2016).

  3. Global Plastics Outlook: Greenhouse Gas Emissions from Plastics Lifecycle—Projections (OECD Environment Statistics, 2023).

  4. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Global Plastics Outlook: Plastic Leakage to the Aquatic Environments by Region—Projections (OECD Publishing, 2023).

  6. Lim, X. Microplastics are everywhere—but are they harmful? Nature 593, 22–25 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Shen, M. C. et al. (Micro)plastic crisis: un-ignorable contribution to global greenhouse gas emissions andclimate change. J. Clean. Prod. 254, 120138 (2020).

  8. Hulea, V. Toward platform chemicals from bio-based ethylene: heterogeneous catalysts and processes. ACS Catal. 8, 3263–3279 (2018).

    Article  CAS  Google Scholar 

  9. PACCOR to Start Bio-PP Products for Orkla (PACCOR, 27 September 2021); https://www.paccor.com/news-detail/paccor-to-start-bio-pp-products-for-orkla

  10. Ma, K. D. et al. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis. Bioresour. Technol. 203, 295–302 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Limayem, A. & Ricke, S. C. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. 38, 449–467 (2012).

    Article  CAS  Google Scholar 

  12. Cui, X. K. et al. Robust enzymatic hydrolysis of Formiline-pretreated oil palm empty fruit bunches (EFB) for efficient conversion of polysaccharide to sugars and ethanol. Bioresour. Technol. 166, 584–591 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Sharma, S., Sharma, S., Singh, S., Nain, L. & Arora, A. Improving yeast strains for pentose hexose co-fermentation: successes and hurdles. In Proc. 1st International Conference on Recent Advances in Bionergy Research (eds Kumar, S. et al.) https://doi.org/10.1007/978-81-322-2773-1_3 (Springer, 2016).

  14. Chacon-Navarrete, H., Martin, C. & Moreno-Garcia, J. Yeast immobilization systems for second-generation ethanol production: actual trends and future perspectives. Biofuel. Bioprod. Biorefin. 15, 1549–1565 (2021).

    Article  CAS  Google Scholar 

  15. Cruz, M. L., de Resende, M. M. & Ribeiro, E. J. Improvement of ethanol production in fed-batch fermentation using a mixture of sugarcane juice and molasse under very high-gravity conditions. Bioprocress Biosyst. Eng. 44, 617–625 (2021).

    Article  CAS  Google Scholar 

  16. Pandey, A. K. et al. Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF. Biotechnol. Biofuels 12, 40 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cunha, J. T. et al. Cell surface engineering of Saccharomyces cerevisiae for simultaneous valorization of corn cob and cheese whey via ethanol production. Energy Convers. Manag. https://doi.org/10.1016/j.enconman.2021.114359 (2021).

  18. Yan, S. B., Chen, X. S., Wu, J. Y. & Wang, P. C. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk. Appl. Microbiol. Biotechnol. 94, 829–838 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, Z., Huang, J. H., Wu, Y. & Liu, D. H. Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose. Metab. Eng. 33, 12–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Chae, T. U., Choi, S. Y., Ryu, J. Y. & Lee, S. Y. Production of ethylene glycol from xylose by metabolically engineered Escherichia coli. AIChE J. 64, 4193–4200 (2018).

    Article  CAS  Google Scholar 

  21. Sandei, B., Massardier, V. & Brunel, R. Alternative building blocks sources for poly (ethylene terephthalate): a short review with socio-economical points of view. Front. Mater. 9, 1005770 (2022).

    Article  Google Scholar 

  22. Maneffa, A., Priecel, P. & Lopez-Sanchez, J. A. Biomass-derived renewable aromatics: selective routes and outlook for p-xylene commercialisation. ChemSusChem 9, 2736–2748 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Baez, A., Cho, K. M. & Liao, J. C. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl. Microbiol. Biotechnol. 90, 1681–1690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamamoto, S., Suda, M., Niimi, S., Inui, M. & Yukawa, H. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol. Bioeng. 110, 2938–2948 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Sarria, S., Wong, B., Martin, H. G., Keasling, J. D. & Peralta-Yahya, P. Microbial synthesis of pinene. ACS Synth. Biol. 3, 466–475 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Rolf, J., Julsing, M. K., Rosenthal, K. & Lutz, S. A gram-scale limonene production process with engineered Escherichia coli. Molecules 25, 1881 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ling, C. et al. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. Nat. Commun. 13, 4925 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Becker, J., Kuhl, M., Kohlstedt, M., Starck, S. & Wittmann, C. Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microb. Cell Factories 17, 115 (2018).

    Article  Google Scholar 

  29. Bramucci, M. G. et al. Pure bacterial isolates that convert p-xylene to terephthalic acid. Appl. Microbiol. Biotechnol. 58, 255–259 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, J., Tian, J. & Xu, J. H. A method for producing terephthalic acid by Comamonas testosterone DSM6577. Chin. J. Catal. 27, 297–298 (2006).

    CAS  Google Scholar 

  31. Pressler, U. et al. Biotechnological perparation of alcohols, aldehydes and carboxylic acids. US patent US5753471A (1998).

  32. Luo, Z. W. & Lee, S. Y. Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli. Nat. Commun. 8, 15689 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo, Z. W., Choi, K. R. & Lee, S. Y. Improved terephthalic acid production from p-xylene using metabolically engineered Pseudomonas putida. Metab. Eng. 76, 75–86 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. DeJong, E., Dam, R., Sipos, L., Den Ouden, D. & Gruter, G. J. Furandicarboxylic acid (FDCA) a versatile building block for a very interesting class of polyesters. Am. Chem. Soc. 241, 1–13 (2011).

    Google Scholar 

  35. Cui, Y. A., Deng, C., Fan, L. Q., Qiu, Y. J. & Zhao, L. M. Progress in the biosynthesis of bio-based PET and PEF polyester monomers. Green Chem. 25, 5836–5857 (2023).

    Article  CAS  Google Scholar 

  36. Sheng, Y. Q., Tan, X., Zhou, X. & Xu, Y. Bioconversion of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) by a native obligate aerobic bacterium, Acinetobacter calcoaceticus NL14. Appl. Biochem. Biotech. 192, 455–465 (2020).

    Article  CAS  Google Scholar 

  37. Koopman, F., Wierckx, N., de Winde, J. H. & Ruijssenaars, H. J. Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid. Bioresour. Technol. 101, 6291–6296 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Yuan, H. B. et al. Enhanced 2,5-furandicarboxylic acid (FDCA) production in Raoultella ornithinolytica BF60 by manipulation of the key genes in FDCA biosynthesis pathway. J. Microbiol. Biotechnol. 28, 1999–2008 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Kurian, J. V. A new polymer platform for the future—Sorona® from corn derived 1,3-propanediol. J. Polym. Environ. 13, 159–167 (2005).

    Article  CAS  Google Scholar 

  40. Wang, X. L. et al. Sequential fed-batch fermentation of 1,3-propanediol from glycerol by Clostridium butyricum DL07. Appl. Microbiol. Biotechnol. 104, 9179–9191 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Zhou, S. et al. Isolation and characterization of a Klebsiella pneumoniae strain from mangrove sediment for efficient biosynthesis of 1,3-propanediol. Sci. Bull. 60, 511–521 (2015).

    Article  CAS  Google Scholar 

  42. Cervin, M. A., Soucaille, P. & Valle, F. Process for the biological production of 1,3-propanediol with high yield. US patent US7371558B2 (2008).

  43. Zhou, S. F., Lama, S., Sankaranarayanan, M. & Park, S. Metabolic engineering of Pseudomonas denitrificans for the 1,3-propanediol production from glycerol. Bioresour. Technol. 292, 121933 (2019).

  44. Gonzalez-Pajuelo, M. et al. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab. Eng. 7, 329–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kumar, R. et al. An overview of caprolactam synthesis. Catal. Rev. Sci. Eng. 61, 516–594 (2019).

    Article  CAS  Google Scholar 

  46. Sarak, S. et al. One-pot biocatalytic synthesis of nylon monomers from cyclohexanol using Escherichia coli-based concurrent cascade consortia. Green Chem. 23, 9447–9453 (2021).

    Article  CAS  Google Scholar 

  47. Deng, Y., Ma, L. Z. & Mao, Y. Biological production of adipic acid from renewable substrates: current and future methods. Biochem. Eng. J. 105, 16–26 (2016).

    Article  CAS  Google Scholar 

  48. Chen, N., Wang, J. Y., Zhao, Y. Y. & Deng, Y. Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer. Microb. Cell Factories 17, 67 (2018).

  49. Chae, T. U., Ko, Y. S., Hwang, K. S. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams. Metab. Eng. 41, 82–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, M. et al. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metab. Eng. 47, 254–262 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Picataggio, S. & Beardslee, T. Biological methods for preparing adpic acid. US patent US20120021474A1 (2012).

  52. Fedorchuk, T. P. et al. One-pot biocatalytic transformation of adipic acid to 6-aminocaproic acid and 1,6-hexamethylenediamine using carboxylic acid reductases and transaminases. J. Am. Chem. Soc. 142, 1038–1048 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, L., Li, G. H., Li, A. T. & Deng, Y. Directed synthesis of biobased 1,6-diaminohexane from adipicacid by rational regulation of a functional enzyme cascade in Escherichia coli. ACS Sustain. Chem. Eng. 11, 6011–6020 (2023).

    Article  CAS  Google Scholar 

  54. Turk, S. C. H. J. et al. Metabolic engineering toward sustainable production of nylon-6. ACS Synth. Biol. 5, 65–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Han, T. & Lee, S. Y. Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer. Metab. Eng. 79, 78–85 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Jeon, W. Y. et al. Microbial production of sebacic acid from a renewable source: production, purification, and polymerization. Green Chem. 21, 6491–6501 (2019).

    Article  CAS  Google Scholar 

  57. Clomburg, J. M. et al. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Metab. Eng. 28, 202–212 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Bioplastic Materials (European Bioplastics e.V., 2022); https://www.european-bioplastics.org/bioplastics/materials/

  59. Aversa, C., Barletta, M., Cappiello, G. & Gisario, A. Compatibilization strategies and analysis of morphological features of poly (butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: a state-of-art review. Eur. Polym. J. 173, 111304 (2022).

    Article  CAS  Google Scholar 

  60. Yim, H. et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7, 445–452 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Burgard, A., Burk, M. J., Osterhout, R., Van Dien, S. & Yim, H. Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr. Opin. Biotechnol. 42, 118–125 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Jansen, M. L. A. & van Gulik, W. M. Towards large scale fermentative production of succinic acid. Curr. Opin. Biotechnol. 30, 190–197 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, S. J., Song, H. & Lee, S. Y. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl. Environ. Microbiol. 72, 1939–1948 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, C., Gao, S., Yang, X. F. & Lin, C. S. K. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor. Bioresour. Technol. 249, 612–619 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Chung, S. C., Park, J. S., Yun, J. & Park, J. H. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum. Metab. Eng. 40, 157–164 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Ahn, J. H., Lee, J. A., Bang, J. & Lee, S. Y. Membrane engineering via trans-unsaturated fatty acids production improves succinic acid production in Mannheimia succiniciproducens. J. Ind. Microbiol. Biotechnol. 45, 555–566 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Ahn, J. H. et al. Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase. Nat. Commun. 11, 1970 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. de Oliveira, P. Z., de Souza Vandenberghe, L. P., de Mello, A. F. M. & Soccol, C. R. A concise update on major poly-lactic acid bioprocessing barriers. Bioresour. Technol. Rep. 18, 101094 (2022).

    Article  Google Scholar 

  69. Moon, S. K., Wee, Y. J. & Choi, G. W. A novel lactic acid bacterium for the production of high purity l-lactic acid, Lactobacillus paracasei subsp. paracasei CHB2121. J. Biosci. Bioeng. 114, 155–159 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Romani, A., Yanez, R., Garrote, G. & Alonso, J. L. SSF production of lactic acid from cellulosic biosludges. Bioresour. Technol. 99, 4247–4254 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Ou, M. S., Ingram, L. O. & Shanmugam, K. T. l(+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. J. Ind. Microbiol. Biotechnol. 38, 599–605 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Hidese, R., Matsuda, M., Osanai, T., Hasunuma, T. & Kondo, A. Malic enzyme facilitates d-lactate production through increased pyruvate supply during anoxic dark fermentation in Synechocystis sp. PCC 6803. ACS Synth. Biol. 9, 260–268 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, X. D., Cui, Z. Z., Sun, X., Wang, Z. W. & Chen, T. Production of 3-hydroxypropionic acid from renewable substrates by metabolically engineered microorganisms: a review. Molecules 28, 1888 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. LETZero Product Book, 16–17 (LG Chem, 2021).

  75. Kim, J. W., Ko, Y. S., Chae, T. U. & Lee, S. Y. High-level production of 3-hydroxypropionic acid from glycerol as a sole carbon source using metabolically engineered Escherichia coli. Biotechnol. Bioeng. 117, 2139–2152 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, Z. et al. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose. Metab. Eng. 39, 151–158 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Zhao, P., Ma, C. L., Xu, L. D. & Tian, P. F. Exploiting tandem repetitive promoters for high-level production of 3-hydroxypropionic acid. Appl. Microbiol. Biotechnol. 103, 4017–4031 (2019).

    Article  PubMed  Google Scholar 

  78. Chu, H. S. et al. Direct fermentation route for the production of acrylic acid. Metab. Eng. 32, 23–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Ko, Y. S., Kim, J. W., Chae, T. U., Song, C. W. & Lee, S. Y. A novel biosynthetic pathway for the production of acrylic acid through β-alanine route in Escherichia coli. ACS Synth. Biol. 9, 1150–1159 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Chae, T. U., Kim, W. J., Choi, S., Park, S. J. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Sci. Rep. 5, 13040 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Noh, M., Yoo, S. M., Kim, W. J. & Lee, S. Y. Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli. Cell Syst. 5, 418–426 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, J. et al. A novel process for cadaverine bio-production using a consortium of two engineered Escherichia coli. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01312 (2018).

  83. Song, C. W., Kim, J. W., Cho, I. J. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through β-alanine route. ACS Synth. Biol. 5, 1256–1263 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, J. A., Ahn, J. H., Kim, I., Li, S. & Lee, S. Y. Synthesis, characterization, and application of fully bio-based and biodegradable nylon-4,4 and -5,4. ACS Sustain. Chem. Eng. 8, 5604–5614 (2020).

    Article  CAS  Google Scholar 

  85. Kind, S. et al. From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab. Eng. 25, 113–123 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Kim, H. T. et al. Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510. ACS Sustain. Chem. Eng. 6, 5296–5305 (2018).

    Article  CAS  Google Scholar 

  87. Han, T., Kim, G. B. & Lee, S. Y. Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing Corynebacterium glutamicum. Proc. Natl Acad. Sci. USA 117, 30328–30334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Michinobu, T. et al. Polyesters of 2-pyrone-4,6-dicarboxylic acid (PDC) obtained from a metabolic intermediate of lignin. Polym. J. 40, 68–75 (2008).

    Article  CAS  Google Scholar 

  89. Otsuka, Y. et al. Efficient production of 2-pyrone 4,6-dicarboxylic acid as a novel polymer-based material from protocatechuate by microbial function. Appl. Microbiol. Biotechnol. 71, 608–614 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Luo, Z. W., Kim, W. J. & Lee, S. Y. Metabolic engineering of Escherichia coli for efficient production of 2-pyrone-4,6-dicarboxylic acid from glucose. ACS Synth. Biol. 7, 2296–2307 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Zhou, D. et al. Multi-step biosynthesis of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid from glucose. Biotechnol. Biofuels Bioprod. https://doi.org/10.1186/s13068-023-02350-y (2023).

  92. Liu, T. Q. et al. Synthesis of polymandelide: a degradable polylactide derivative with polystyrene-like properties. Macromolecules 40, 6040–6047 (2007).

    Article  CAS  Google Scholar 

  93. Sun, Z. T. et al. Metabolic engineering of the l-phenylalanine pathway in Escherichia coli for the production of S- or R-mandelic acid. Microb. Cell Factories 10, 71 (2011).

    Article  CAS  Google Scholar 

  94. Choi, S. Y. et al. Microbial polyhydroxyalkanoates and nonnatural polyesters. Adv. Mater. 32, e1907138 (2020).

    Article  PubMed  Google Scholar 

  95. Sudesh, K., Abe, H. & Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25, 1503–1555 (2000).

    Article  CAS  Google Scholar 

  96. Markets and Markets. Polyhydroxyalkanoate (PHA) Market by Type (Short Chain Length, Medium Chain Length), Production Methods (Sugar Fermentation, Vegetable Oil Fermentation), Application (Packaging & Food Services, Biomedical), and Region—Global Forecast to 2028 https://www.marketsandmarkets.com/Market-Reports/pha-market-395.html (2023).

  97. Jung, Y. K., Kim, T. Y., Park, S. J. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105, 161–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Choi, S. Y. et al. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat. Biotechnol. 34, 435–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Ryu, H. W., Hahn, S. K., Chang, Y. K. & Chang, H. N. Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phospate limitation. Biotechnol. Bioeng. 55, 28–32 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, F. & Lee, S. Y. Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl. Environ. Microbiol. 63, 3703–3706 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M. & Shah, S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol. Adv. 25, 148–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Choi, J. I., Lee, S. Y. & Han, K. Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of poly(3-hydroxybutyrate) in Escherichia coli. Appl. Environ. Microbiol. 64, 4897–4903 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Choi, J. & Lee, S. Y. Efficient and economical recovery of poly(3-hydroxybutyrate) from recombinant Escherichia coli by simple digestion with chemicals. Biotechnol. Bioeng. 62, 546–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Lee, S. Y. & Choi, J. I. High level production of supra molecular weight poly(3-hydroxybutyrate) by metabolically engineered Escherichia coli. Biotechnol. Bioprocess Eng. 9, 196–200 (2004).

    Article  Google Scholar 

  105. Doi, Y., Segawa, A. & Kunioka, M. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int. J. Biol. Macromol. 12, 106–111 (1990).

    Article  CAS  PubMed  Google Scholar 

  106. Andreessen, B., Taylor, N. & Steinbuchela, A. Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials. Appl. Environ. Microbiol. 80, 6574–6582 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kim, B. S. et al. Production of poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) by fed-batch culture of Alcaligenes eutrophus with substrate control using online glucose analyzer. Enzyme Micro. Technol. 16, 556–561 (1994).

    Article  CAS  Google Scholar 

  108. Aldor, A. S., Kim, S. W., Prather, K. L. J. & Keasling, J. D. Metabolic engineering of a novel propionate-independent pathway for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica serovar typhimurium. Appl. Environ. Microbiol. 68, 3848–3854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li, Z. J. et al. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab. Eng. 12, 352–359 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Fukui, T., Suzuki, M., Tsuge, T. & Nakamura, S. Microbial synthesis of poly((R)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered Cupriavidus necator. Biomacromolecules 10, 700–706 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Wang, Q. et al. Biosynthesis of poly(3-hydroxypropionate-co-3-hydroxybutyrate) with fully controllable structures from glycerol. Bioresour. Technol. 142, 741–744 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Noda, I., Lindsey, S. B. & Caraway, D. in Plastics from Bacteria. Microbiology Monographs Vol. 14 (ed. Chen, G. Q.) 237–255 (2010).

  113. Lee, S. H. et al. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila. Biotechnol. Bioeng. 67, 240–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Kahar, P., Tsuge, T., Taguchi, K. & Doi, Y. High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym. Degrad. Stabil. 83, 79–86 (2004).

    Article  CAS  Google Scholar 

  115. Riedel, S. L. et al. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol. Bioeng. 109, 74–83 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, M., Kurita, S., Orita, I., Nakamura, S. & Fukui, T. Modification of acetoacetyl-CoA reduction step in Ralstonia eutropha for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from structurally unrelated compounds. Microb. Cell Factories 18, 147 (2019).

    Article  Google Scholar 

  117. Utsunomia, C., Ren, Q. & Zinn, M. Poly(4-hydroxybutyrate): current state and perspectives. Front. Bioeng. Biotechnol. 8, 257 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhou, X. Y. et al. Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Micro. Cell Factories 11, 54 (2012).

    Article  CAS  Google Scholar 

  119. Huisman, G. W., Skraly, F., Martin, D. P. & Peoples, O. P. Biological systems for manufacture of polyhydroxyalkanoate polymers containing 4-hydroxyacids. US patent US6316262B1 (2001).

  120. Choi, S. Y. et al. Metabolic engineering for the synthesis of polyesters: a 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab. Eng. 58, 47–81 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Sohn, Y. J., Son, J., Lim, H. J., Lim, S. H. & Park, S. J. Valorization of lignocellulosic biomass for polyhydroxyalkanoate production: status and perspectives. Bioresour. Technol. 360, 127575 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Nielsen, C., Rahman, A., Rehman, A. U., Walsh, M. K. & Miller, C. D. Food waste conversion to microbial polyhydroxyalkanoates. Microb. Biotechnol. 10, 1338–1352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yoon, J. & Oh, M. K. Strategies for biosynthesis of C1 gas-derived polyhydroxyalkanoates: a review. Bioresour. Technol. 344, 126307 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Levett, I. et al. Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane—the case for thermophilic bioprocessing. J. Environ. Chem. Eng. https://doi.org/10.1016/j.jece.2016.07.033 (2016).

  125. Kim, G. B., Choi, S. Y., Cho, I. J., Ahn, D. & Lee, S. Y. Metabolic engineering for sustainability and health. Trends Biotechnol. 41, 425–451 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Tang, R., Yuan, X. & Yang, J. Problems and corresponding strategies for converting CO2 into value-added products in Cupriavidus necator H16 cell factories. Biotechnol. Adv. 67, 108183 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Poblete-Castro, I., Rodriguez, A. L., Lam, C. M. & Kessler, W. Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains. J. Microbiol. Biotechnol. 24, 59–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Chen, G. Q. & Jiang, X. R. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 50, 94–100 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Chen, X. B. et al. Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Bioresour. Technol. 244, 534–541 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Zheng, Y. Y., Yuan, Q. Q., Yang, X. Y. & Ma, H. W. Engineering Escherichia coli for poly-(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis. Enzyme Microb. Technol. 106, 60–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Lin, Z. Q. et al. Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Micro. Cell Factories 14, 185 (2015).

    Article  Google Scholar 

  132. Valentin, H. E. & Steinbuchel, A. Application of enzymatically synthesized short-chain-length hydroxy fatty acid coenzyme A thioesters for assay of polyhydroxyalkanoic acid synthases. Appl. Microbiol. Biotechnol. 40, 699–709 (1994).

    Article  CAS  Google Scholar 

  133. Taguchi, S. et al. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc. Natl Acad. Sci. USA 105, 17323–17327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jung, Y. K. & Lee, S. Y. Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli. J. Biotechnol. 151, 94–101 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Choi, S. Y. et al. Engineering the xylose-catabolizing Dahms pathway for production of poly(d-lactate-co-glycolate) and poly(d-lactate-co-glycolate-co-D-2-hydroxybutyrate) in Escherichia coli. Microb. Biotechnol. 10, 1353–1364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yang, J. E. et al. One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Nat. Commun. 9, 79 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Pathak, V. M. Review on the current status of polymer degradation: a microbial approach. Bioresour. Bioprocess. 4, 135 (2017).

    Article  Google Scholar 

  138. Filiciotto, L. & Rothenberg, G. Biodegradable plastics: standards, policies, and impacts. ChemSusChem 14, 56–72 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Kourmentza, C. et al. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4, 55 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Meereboer, K. W., Misra, M. & Mohanty, A. K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. 22, 5519–5558 (2020).

    Article  CAS  Google Scholar 

  141. Volova, T. G., Prudnikova, S. V., Vinogradova, O. N., Syrvacheva, D. A. & Shishatskaya, E. I. Microbial degradation of polyhydroxyalkanoates with different chemical compositions and their biodegradability. Microb. Ecol. 73, 353–367 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Papaneophytou, C. P., Pantazaki, A. A. & Kyriakidis, D. A. An extracellular polyhydroxybutyrate depolymerase in Thermus thermophilus HB8. Appl. Microbiol. Biotechnol. 83, 659–668 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Knoll, M., Hamm, T. M., Wagner, F., Martinez, V. & Pleiss, J. The PHA depolymerase engineering database: a systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinform. 10, 89 (2009).

    Article  Google Scholar 

  144. Hiraishi, T., Komiya, N. & Maeda, M. Y443F mutation in the substrate-binding domain of extracellular PHB depolymerase enhances its PHB adsorption and disruption abilities. Polym. Degrad. Stabil. 95, 1370–1374 (2010).

    Article  CAS  Google Scholar 

  145. Delacuvellerie, A. et al. Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. J. Hazard. Mater. 419, 126526 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Narancic, T. et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ. Sci. Technol. 52, 10441–10452 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Samantaray, P. K., Little, A., Wemyss, A. M., Iacovidou, E. & Wan, C. Y. Design and control of compostability in synthetic biopolyesters. ACS Sustain. Chem. Eng. 9, 9151–9164 (2021).

    Article  CAS  Google Scholar 

  148. Zaaba, N. F. & Jaafar, M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 60, 2061–2075 (2020).

    Article  CAS  Google Scholar 

  149. Tournier, V. et al. Enzymes? Power for plastics degradation. Chem. Rev. 123, 5612–5701 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Williams, D. F. Enzymic hydrolysis of polylactic acid. Eng. Med. 10, 5–7 (1981).

    Article  Google Scholar 

  151. Kawai, F. et al. Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(l-lactic acid) and poly(d-lactic acid). Polym. Degrad. Stabil. 96, 1342–1348 (2011).

    Article  CAS  Google Scholar 

  152. Ribitsch, D. et al. Small cause, large effect: structural characterization of cutinases from Thermobifida cellulosilytica. Biotechnol. Bioeng. 114, 2481–2488 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Marty, A., Duquesne, S., Guicherd, M., Gueroult, M. & André, I. Novel proteases and uses thereof. US patent US20200385698A1 (2020).

  154. Youngpreda, A. et al. Optimization of poly(dl-lactic acid) degradation and evaluation of biological re-polymerization. J. Polym. Environ. 25, 1131–1139 (2017).

    Article  CAS  Google Scholar 

  155. Lomthong, T. et al. Poly(l-lactide)-degrading enzyme from Laceyella sacchari LP175: cloning, sequencing, expression, characterization and its hydrolysis of poly(L-lactide) polymer. Chiang Mai J. Sci. 46, 417–430 (2019).

    CAS  Google Scholar 

  156. Kleeberg, I., Hetz, C., Kroppenstedt, R. M., Muller, R. J. & Deckwer, W. D. Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates. Appl. Environ. Microbiol. 64, 1731–1735 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Witt, U., Muller, R. J. & Deckwer, W. D. New biodegradable polyester-copolymers from commodity chemicals with favorable use properties. J. Environ. Polym. Degrad. 3, 215–223 (1995).

    Article  CAS  Google Scholar 

  158. Jia, H. et al. Degradation of poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. J. Environ. Sci. 103, 50–58 (2021).

    Article  CAS  Google Scholar 

  159. Tesei, D. et al. Shotgun proteomics reveals putative polyesterases in the secretome of the rock-inhabiting fungus Knufia chersonesos. Sci. Rep. 10, 9770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Biundo, A. et al. Characterization of a poly(butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans. Appl. Microbiol. Biotechnol. 100, 1753–1764 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Kanwal, A., Zhang, M., Sharaf, F. & Li, C. T. Enzymatic degradation of poly (butylene adipate co-terephthalate) (PBAT) copolymer using lipase B from Candida antarctica (CALB) and effect of PBAT on plant growth. Polym. Bull. 79, 9059–9073 (2022).

    Article  CAS  Google Scholar 

  162. Kawai, F., Kawabata, T. & Oda, M. Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling. ACS Sustain. Chem. Eng. 8, 8894–8908 (2020).

    Article  CAS  Google Scholar 

  163. Yang, Y. et al. Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases. Nat. Commun. 14, 1645 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fields, R. D., Rodriguez, F. & Finn, R. K. Microbial degradation of polyesters: polycaprolactone degraded by P. pullulans. J. Appl. Polym. Sci. 18, 3571–3579 (1974).

    Article  CAS  Google Scholar 

  165. Darby, R. T. & Kaplan, A. M. Fungal susceptibility of polyurethanes. Appl. Microbiol. Biotechnol. 16, 900–905 (1968).

    CAS  Google Scholar 

  166. Zhang, Y., Pedersen, J. N., Eser, B. E. & Guo, Z. Biodegradation of polyethylene and polystyrene: from microbial deterioration to enzyme discovery. Biotechnol. Adv. 60, 107991 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Kawai, F., Kawabata, T. & Oda, M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl. Microbiol. Biotechnol. 103, 4253–4268 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sulaiman, S. et al. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl. Environ. Microbiol. 78, 1556–1562 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ronkvist, A. M., Xie, W. C., Lu, W. H. & Gross, R. A. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42, 5128–5138 (2009).

    Article  CAS  Google Scholar 

  170. Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Chow, J. et al. The first archaeal PET-degrading enzyme belongs to the feruloyl-esterase family. Preprint at bioRxiv https://doi.org/10.1101/2022.10.14.512230 (2022).

  172. Joo, S. et al. Structural insight into molecular mechanism of poly (ethylene terephthalate) degradation. Nat. Commun. 9, 382 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Son, H. F. et al. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catal. 9, 3519–3526 (2019).

    Article  CAS  Google Scholar 

  174. Bell, E. L. et al. Directed evolution of an efficient and thermostable PET depolymerase. Nat. Catal. 5, 673–681 (2022).

    Article  CAS  Google Scholar 

  175. Lu, H. Y. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. White, M. F. M. & Wallace, S. A new PETase from the human saliva metagenome and its functional modification via genetic code expansion in bacteria. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202216963 (2023).

  178. Chen, Z. Z. et al. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Sci. Total Environ. 709, 136138 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Howard, S. A. & McCarthy, R. R. Modulating biofilm can potentiate activity of novel plastic-degrading enzymes. npj Biofilms Microbiomes 9, 72 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Restrepo-Florez, J. M., Bassi, A. & Thompson, M. R. Microbial degradation and deterioration of polyethylene—a review. Int. Biodeterior. Biodegradation 88, 83–90 (2014).

    Article  CAS  Google Scholar 

  181. Ren, L. et al. Biodegradation of polyethylene by Enterobacter sp. D1 from the guts of wax moth Galleria mellonella. Catal. Rev. 16, 1941 (2019).

    CAS  Google Scholar 

  182. Mukherjee, S. & Kundu, P. P. Alkaline fungal degradation of oxidized polyethylene in black liquor: studies on the effect of lignin peroxidases and manganese peroxidases. J. Appl. Polym. Sci. https://doi.org/10.1002/app.40738 (2014).

  183. Santo, M., Weitsman, R. & Sivan, A. The role of the copper-binding enzyme—laccase—in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int. Biodeterior. Biodegradation 84, 204–210 (2013).

    Article  CAS  Google Scholar 

  184. Yao, C., Xia, W., Dou, M., Du, Y. & Wu, J. Oxidative degradation of UV-irradiated polyethylene by laccase-mediator system. J. Hazard. Mater. 440, 129709 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Zampolli, J. et al. Oxidative degradation of polyethylene by two novel laccase-like multicopper oxidases from Rhodococcus opacus R7. Environ. Technol. Innov. 32, 103273 (2023).

    Article  CAS  Google Scholar 

  186. Jeon, H. J. & Kim, M. N. Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. Int. Biodeterior. Biodegradation 103, 141–146 (2015).

    Article  CAS  Google Scholar 

  187. Sadler, J. C. & Wallace, S. Microbial synthesis of vanillin from waste poly(ethylene terephthalate). Green Chem. 23, 4665–4672 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kim, H. T. et al. Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET. ACS Sustain. Chem. Eng. 7, 19396–19406 (2019).

    Article  CAS  Google Scholar 

  189. Kenny, S. T. et al. Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Appl. Microbiol. Biotechnol. 95, 623–633 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. Werner, A. Z. et al. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440. Metab. Eng. 67, 250–261 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022).

    Article  CAS  PubMed  Google Scholar 

  192. Spierling, S. et al. Bio-based plastics—a review of environmental, social and economic impact assessments. J. Clean. Prod. 185, 476–491 (2018).

    Article  Google Scholar 

  193. Nicholas Institute for Energy, Environment & Sustainability Plastics Policy Inventory Search (Duke University); https://nicholasinstitute.duke.edu/plastics-policy-inventory/search

  194. Dutta, K., Daverey, A. & Lin, J. G. Evolution retrospective for alternative fuels: first to fourth generation. Renew. Energy 69, 114–122 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Development of Platform Technologies of Microbial Cell Factories for the Next-Generation Biorefineries Project (2022M3J5A1056117) and the Development of Platform Technology for the Production of Novel Aromatic Bioplastic Using Microbial Cell Factories Project (2022M3J4A1053699) from the National Research Foundation supported by the Korean Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Contributions

S.Y.L. conceived the project. S.Y.C., I.J.C., Y.L., H.E.Y., M.K. and S.Y.L. wrote the manuscript. S.Y.C., I.J.C., Y.L., H.E.Y. and M.K. prepared the figures and table.

Corresponding author

Correspondence to Sang Yup Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Kechun Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S.Y., Lee, Y., Yu, H.E. et al. Sustainable production and degradation of plastics using microbes. Nat Microbiol 8, 2253–2276 (2023). https://doi.org/10.1038/s41564-023-01529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01529-1

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research