Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Environmental impacts and remediation of dye-containing wastewater

Abstract

Synthetic dyes are used in various industries including textile processing, food production and the pharmaceutical sector. Yet, approximately 80% of the dye-containing wastewaters produced are often released untreated into waterways or used directly for irrigation, causing detrimental impacts on human health and ecosystems. In this Review, we discuss the environmental impact of dye-containing wastewater and explore the chemical, biological and physical mitigation strategies used to treat and decontaminate dye-containing wastewaters. Untreated synthetic dyes cause coloration of receiving water bodies, hindering the degree of visible light reaching the photic ozone, and have carcinogenic, mutagenic and teratogenic properties that have toxic impacts on plants, animals and humans. Chemical treatment methods such as coagulation are the most widely adopted treatment methods; however, they require careful sludge management to be effective. Biological degradation, involving the implementation of enzymes, microorganisms and plants, is an environmentally friendly and energy-efficient approach for dye degradation, but it requires lengthy reaction times and the use of selective bio-organisms for target dyes. Advanced membrane-based physical separation can achieve effective removal of dyes and inorganic salts from highly saline dye-containing wastewater, while also enabling their recovery and reuse. Strengthened regulatory requirements and development of non-toxic dyes are required in conjunction with these remediation treatments to effectively mitigate dye-related pollution.

Key points

  • Untreated synthetic dyes released into aquatic environments reduce the light available for photosynthesis by primary producers, with consequential impacts for the whole food chain. In addition, dyes are also directly harmful to plants, animals and humans, with human health implications including increasing allergy and cancer risk.

  • Chemical coagulation and electro-coagulation are widely adopted methods of dye removal. However, coagulant efficacy and sludge management are crucial for efficient removal of dyes.

  • Advanced oxidation processes, which encompass chemically mediated advanced oxidation processes, photocatalysis and electrocatalysis, have been proven effective at dye degradation. To ensure these methods are sustainable and safe, it is crucial to minimize chemical and energy consumption and monitor and manage the toxic by-products that can be generated during the process.

  • Biological degradation is an eco-friendly and energy-efficient method for dye removal through the utilization of enzymes, microorganisms (bacteria, fungi, yeast and algae) and plants, but these methods require a long reaction time, owing to slow kinetics during dye degradation.

  • Emerging membrane-based physical separation techniques, including tight ultrafiltration, loose nanofiltration and electro-driven nanofiltration, show a great potential in fractionation of dyes and salts from highly saline dye-containing wastewater. These methods also enable efficient recovery of dyes and salts to promote a circular economy in the textile sector.

  • To achieve sustainable and safe synthetic dye use, these advanced remediation technologies must be implemented in combination with proper regulation of dye-containing wastewater discharge in collaboration between governing bodies and industry stakeholders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Environmental impacts of dye-containing wastewater.
Fig. 2: Chemical remediation for dye-containing wastewater by coagulation.
Fig. 3: Dye removal by advanced oxidation processes.
Fig. 4: Biological remediation of dye-containing wastewater.
Fig. 5: Physical adsorption mechanisms of dye removal for conventional remediation of dye-containing wastewater.
Fig. 6: Dye removal by conventional membrane separation processes.

Similar content being viewed by others

References

  1. Tkaczyk, A., Mitrowska, K. & Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci. Total Environ. 717, 137222 (2020).

    Article  Google Scholar 

  2. Ewuzie, U. et al. A review on treatment technologies for printing and dyeing wastewater (PDW). J. Water Process Eng. 50, 103273 (2022).

    Article  Google Scholar 

  3. Kumbhar, D. A. in Techno-Societal 2016 (eds Pawar, P. M. et al.) 969–975 (Springer, 2018).

  4. Jegatheesan, V., Shu, L. & Jegatheesan, L. Producing fit-for-purpose water and recovering resources from various sources: an overview. Environ. Qual. Manag. 31, 9–28 (2021).

    Article  Google Scholar 

  5. Lin, J. et al. Sustainable management of textile wastewater: a hybrid tight ultrafiltration/bipolar-membrane electrodialysis process for resource recovery and zero liquid discharge. Ind. Eng. Chem. Res. 58, 11003–11012 (2019).

    Article  Google Scholar 

  6. Khan, S. et al. Emerging contaminants of high concern for the environment: current trends and future research. Environ. Res. 207, 112609 (2022).

    Article  Google Scholar 

  7. Chen, H. et al. Dyeing and finishing wastewater treatment in China: state of the art and perspective. J. Clean. Prod. 326, 129353 (2021).

    Article  Google Scholar 

  8. Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A. & Polonio, J. C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 3, 275–290 (2019).

    Article  Google Scholar 

  9. Breitenmoser, L. et al. Perceived drivers and barriers in the governance of wastewater treatment and reuse in India: insights from a two-round Delphi study. Resour. Conserv. Recycl. 182, 106285 (2022).

    Article  Google Scholar 

  10. United Nations. Transforming our world: the 2030 agenda for sustainable development. UN.org https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981 (2015).

  11. Al-Tohamy, R. et al. A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 231, 113160 (2022).

    Article  Google Scholar 

  12. Mcyotto, F. et al. Effect of dye structure on color removal efficiency by coagulation. Chem. Eng. J. 405, 126674 (2021).

    Article  Google Scholar 

  13. Velusamy, S., Roy, A., Sundaram, S. & Kumar Mallick, T. A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem. Rec. 21, 1570–1610 (2021).

    Article  Google Scholar 

  14. Ismail, G. A. & Sakai, H. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere 291, 132906 (2022).

    Article  Google Scholar 

  15. Behera, M. et al. A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: an integrated system design approach. J. Environ. Chem. Eng. 9, 105277 (2021).

    Article  Google Scholar 

  16. Ye, W. et al. Loose nanofiltration-based electrodialysis for highly efficient textile wastewater treatment. J. Membr. Sci. 608, 118182 (2020).

    Article  Google Scholar 

  17. Ye, W. et al. Enhanced fractionation of dye/salt mixtures by tight ultrafiltration membranes via fast bio-inspired co-deposition for sustainable textile wastewater management. Chem. Eng. J. 379, 122321 (2020).

    Article  Google Scholar 

  18. Goh, P. S., Wong, K. C. & Ismail, A. F. Membrane technology: a versatile tool for saline wastewater treatment and resource recovery. Desalination 521, 115377 (2022).

    Article  Google Scholar 

  19. Sharma, J., Sharma, S. & Soni, V. Classification and impact of synthetic textile dyes on aquatic flora: a review. Reg. Stud. Mar. Sci. 45, 101802 (2021).

    Google Scholar 

  20. Novotný, Č. et al. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes. Chemosphere 63, 1436–1442 (2006).

    Article  Google Scholar 

  21. Krishna Moorthy, A. et al. Acute toxicity of textile dye methylene blue on growth and metabolism of selected freshwater microalgae. Environ. Toxicol. Phar. 82, 103552 (2021).

    Article  Google Scholar 

  22. Hocini, I. et al. Can duckweed be used for the biomonitoring of textile effluents? Euro-Mediterr. J. Environ. Integr. 4, 34 (2019).

    Article  Google Scholar 

  23. Belpaire, C., Reyns, T., Geeraerts, C. & Van Loco, J. Toxic textile dyes accumulate in wild European eel Anguilla anguilla. Chemosphere 138, 784–791 (2015).

    Article  Google Scholar 

  24. Poopal, R. et al. Triphenylmethane dye (C52H54N4O12) is potentially a hazardous substance in edible freshwater fish at trace level: toxicity, hematology, biochemistry, antioxidants, and molecular docking evaluation study. Environ. Sci. Pollut. Res. 30, 28759–28779 (2023).

    Article  Google Scholar 

  25. Minhas, P. S. et al. Wastewater irrigation in India: current status, impacts and response options. Sci. Total Environ. 808, 152001 (2022).

    Article  Google Scholar 

  26. Imran, M. et al. The stability of textile azo dyes in soil and their impact on microbial phospholipid fatty acid profiles. Ecotoxicol. Environ. Saf. 120, 163–168 (2015).

    Article  Google Scholar 

  27. Arshad, H., Imran, M. & Ashraf, M. Toxic effects of Red-S3B dye on soil microbial activities, wheat yield, and their alleviation by pressmud application. Ecotoxicol. Environ. Saf. 204, 111030 (2020).

    Article  Google Scholar 

  28. Topaç, F. O., Dindar, E., Uçaroğlu, S. & Başkaya, H. S. Effect of a sulfonated azo dye and sulfanilic acid on nitrogen transformation processes in soil. J. Hazard. Mater. 170, 1006–1013 (2009).

    Article  Google Scholar 

  29. Haq, I., Raj, A. & Markandeya Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere 196, 58–68 (2018).

    Article  Google Scholar 

  30. Caritá, R. & Marin-Morales, M. A. Induction of chromosome aberrations in the Allium cepa test system caused by the exposure of seeds to industrial effluents contaminated with azo dyes. Chemosphere 72, 722–725 (2008).

    Article  Google Scholar 

  31. Sharma, A. et al. Photosynthetic response of plants under different abiotic stresses: a review. J. Plant Growth Regul. 39, 509–531 (2020).

    Article  Google Scholar 

  32. Copaciu, F. et al. Diffuse water pollution by anthraquinone and azo dyes in environment importantly alters foliage volatiles, carotenoids and physiology in wheat (Triticum aestivum). Water Air Soil Pollut. 224, 1478 (2013).

    Article  Google Scholar 

  33. Rovira, J. & Domingo, J. L. Human health risks due to exposure to inorganic and organic chemicals from textiles: a review. Environ. Res. 168, 62–69 (2019).

    Article  Google Scholar 

  34. Khan, S. & Malik, A. in Environmental Deterioration and Human Health: Natural and Anthropogenic Determinants (eds Malik, A. et al.) 55–71 (Springer, 2014).

  35. Park, H. S. et al. Clinical and immunologic evaluations of reactive dye-exposed workers. J. Allergy Clin. Immun. 87, 639–649 (1991).

    Article  Google Scholar 

  36. Sun, Y., Gu, Y. & Zha, Q. A novel surface imprinted resin for the selective removal of metal-complexed dyes from aqueous solution in batch experiments: ACB GGN as a representative contaminant. Chemosphere 280, 130611 (2021).

    Article  Google Scholar 

  37. Leme, D. M. et al. Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system). J. Toxicol. Environ. Health A. 78, 466–480 (2015).

    Article  Google Scholar 

  38. Chung, K. Azo dyes and human health: a review. J. Environ. Sci. Health C. 34, 233–261 (2016).

    Article  Google Scholar 

  39. Littlefield, N. A., Blackwell, B., Hewitt, C. C. & Gaylor, D. W. Chronic toxicity and carcinogenicity studies of gentian violet in mice. Toxicol. Sci. 5, 902–912 (1985).

    Article  Google Scholar 

  40. Raj, S., Singh, H. & Bhattacharya, J. Treatment of textile industry wastewater based on coagulation-flocculation aided sedimentation followed by adsorption: process studies in an industrial ecology concept. Sci. Total Environ. 857, 159464 (2023).

    Article  Google Scholar 

  41. Dotto, J. et al. Performance of different coagulants in the coagulation/flocculation process of textile wastewater. J. Clean. Prod. 208, 656–665 (2019).

    Article  Google Scholar 

  42. Ihaddaden, S., Aberkane, D., Boukerroui, A. & Robert, D. Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). J. Water Process Eng. 49, 102952 (2022).

    Article  Google Scholar 

  43. Li, S. & Kang, Y. Effect of PO43− on the polymerization of polyferric phosphatic sulfate and its flocculation characteristics for different simulated dye wastewater. Sep. Purif. Technol. 276, 119373 (2021).

    Article  Google Scholar 

  44. Bagepally, B. S. et al. Association between aluminium exposure and cognitive functions: a systematic review and meta-analysis. Chemosphere 268, 128831 (2021).

    Article  Google Scholar 

  45. Wang, K. et al. Fabrication of salt-tolerant chitosan-based polyelectrolyte flocculant through enhancing H-bond hydration effect for treating and recycling of highly saline dyeing wastewater. Sep. Purif. Technol. 307, 122786 (2023).

    Article  Google Scholar 

  46. Abujazar, M. S. S. et al. Recent advancement in the application of hybrid coagulants in coagulation-flocculation of wastewater: a review. J. Clean. Prod. 345, 131133 (2022).

    Article  Google Scholar 

  47. Bahrodin, M. B. et al. Recent advances on coagulation-based treatment of wastewater: transition from chemical to natural coagulant. Curr. Pollut. Rep. 7, 379–391 (2021).

    Article  Google Scholar 

  48. Tegladza, I. D. et al. Electrocoagulation processes: a general review about role of electro-generated flocs in pollutant removal. Process Saf. Environ. Prot. 146, 169–189 (2021).

    Article  Google Scholar 

  49. Núñez, J. et al. Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry. J. Hazard. Mater. 371, 705–711 (2019).

    Article  Google Scholar 

  50. Khandegar, V. & Saroha, A. K. Electrocoagulation for the treatment of textile industry effluent — a review. J. Environ. Manag. 128, 949–963 (2013).

    Article  Google Scholar 

  51. Mansouri, K., Ibrik, K., Bensalah, N. & Abdel-Wahab, A. Anodic dissolution of pure aluminum during electrocoagulation process: influence of supporting electrolyte, initial pH, and current density. Ind. Eng. Chem. Res. 50, 13362–13372 (2011).

    Article  Google Scholar 

  52. Louhichi, B., Gaied, F., Mansouri, K. & Jeday, M. R. Treatment of textile industry effluents by electro-coagulation and electro-Fenton processes using solar energy: a comparative study. Chem. Eng. J. 427, 131735 (2022).

    Article  Google Scholar 

  53. Ciabatti, I., Tognotti, F. & Lombardi, L. Treatment and reuse of dyeing effluents by potassium ferrate. Desalination 250, 222–228 (2010).

    Article  Google Scholar 

  54. Bilińska, L. & Gmurek, M. Novel trends in AOPs for textile wastewater treatment. Enhanced dye by-products removal by catalytic and synergistic actions. Water Resour. Ind. 26, 100160 (2021).

    Article  Google Scholar 

  55. Ribeiro, J. P. & Nunes, M. I. Recent trends and developments in Fenton processes for industrial wastewater treatment — a critical review. Environ. Res. 197, 110957 (2021).

    Article  Google Scholar 

  56. Bokare, A. D. & Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 275, 121–135 (2014).

    Article  Google Scholar 

  57. Rekhate, C. V. & Srivastava, J. K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater — a review. Chem. Eng. J. Adv. 3, 100031 (2020).

    Article  Google Scholar 

  58. Li, J. et al. Application of α-Fe2O3-based heterogeneous photo-Fenton catalyst in wastewater treatment: a review of recent advances. J. Environ. Chem. Eng. 10, 108329 (2022).

    Article  Google Scholar 

  59. Ikhlaq, A. et al. Solar photo-catalytic ozonation on γ-alumina for the removal of dyes in wastewater. Int. J. Environ. Sci. Technol. 18, 1967–1974 (2021).

    Article  Google Scholar 

  60. Ramos, M. D. N. et al. A review on the treatment of textile industry effluents through Fenton processes. Process Saf. Environ. Prot. 155, 366–386 (2021).

    Article  Google Scholar 

  61. Wang, L. et al. MXenes as heterogeneous Fenton-like catalysts for removal of organic pollutants: a review. J. Environ. Chem. Eng. 10, 108954 (2022).

    Article  Google Scholar 

  62. Du, X., Wang, S., Ye, F. & Qingrui, Z. Derivatives of metal-organic frameworks for heterogeneous Fenton-like processes: from preparation to performance and mechanisms in wastewater purification — a mini review. Environ. Res. 206, 112414 (2022).

    Article  Google Scholar 

  63. Huang, W. et al. Activation of persulfates by carbonaceous materials: a review. Chem. Eng. J. 418, 129297 (2021).

    Article  Google Scholar 

  64. Ghanbari, F. & Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem. Eng. J. 310, 41–62 (2017).

    Article  Google Scholar 

  65. Ushani, U. et al. Sulfate radicals-based advanced oxidation technology in various environmental remediation: a state-of-the-art review. Chem. Eng. J. 402, 126232 (2020).

    Article  Google Scholar 

  66. Liu, S. et al. Heteroatom doping in metal-free carbonaceous materials for the enhancement of persulfate activation. Chem. Eng. J. 427, 131655 (2022).

    Article  Google Scholar 

  67. Zhao, Y. & Wang, H. Structure-function correlations of carbonaceous materials for persulfate-based advanced oxidation. Langmuir 37, 13969–13975 (2021).

    Article  Google Scholar 

  68. Lotfi, S., Fischer, K., Schulze, A. & Schäfer, A. I. Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process. Nat. Nanotechnol. 17, 417–423 (2022).

    Article  Google Scholar 

  69. Tong, H. et al. Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012).

    Article  Google Scholar 

  70. Qin, X. et al. Enhanced photocatalytic activity for degrading Rhodamine B solution of commercial Degussa P25 TiO2 and its mechanisms. J. Hazard. Mater. 172, 1168–1174 (2009).

    Article  Google Scholar 

  71. Thambiliyagodage, C. Activity enhanced TiO2 nanomaterials for photodegradation of dyes — a review. Environ. Nanotechnol. Monit. Manag. 16, 100592 (2021).

    Google Scholar 

  72. Waghchaure, R. H., Adole, V. A. & Jagdale, B. S. Photocatalytic degradation of methylene blue, Rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: a concise review. Inorg. Chem. Commun. 143, 109764 (2022).

    Article  Google Scholar 

  73. Zhang, Y. et al. Synthesis of SnO2/ZnO flowerlike composites photocatalyst for enhanced photocatalytic degradation of malachite green. Opt. Mater. 133, 112978 (2022).

    Article  Google Scholar 

  74. Akbari, A. et al. Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorg. Chem. Commun. 115, 107867 (2020).

    Article  Google Scholar 

  75. Jo, W. & Tayade, R. J. Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes. Chin. J. Catal. 35, 1781–1792 (2014).

    Article  Google Scholar 

  76. Guo, R. et al. Recent advances and perspectives of g-C3N4-based materials for photocatalytic dyes degradation. Chemosphere 295, 133834 (2022).

    Article  Google Scholar 

  77. Zhang, X. et al. Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: recent advances. Chem. Eng. J. 390, 124475 (2020).

    Article  Google Scholar 

  78. Li, S. et al. Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: a review. J. Environ. Chem. Eng. 9, 105967 (2021).

    Article  Google Scholar 

  79. Mukherjee, D., Van der Bruggen, B. & Mandal, B. Advancements in visible light responsive MOF composites for photocatalytic decontamination of textile wastewater: a review. Chemosphere 295, 133835 (2022).

    Article  Google Scholar 

  80. Hu, S. et al. Design and construction strategies to improve covalent organic frameworks photocatalyst’s performance for degradation of organic pollutants. Chemosphere 286, 131646 (2022).

    Article  Google Scholar 

  81. Zhang, T., Xing, G., Chen, W. & Chen, L. Porous organic polymers: a promising platform for efficient photocatalysis. Mater. Chem. Front. 4, 332–353 (2020).

    Article  Google Scholar 

  82. Rodríguez-Narváez, O. M. et al. Electrochemical oxidation technology to treat textile wastewaters. Curr. Opin. Electrochem. 29, 100806 (2021).

    Article  Google Scholar 

  83. Hodges, B. C., Cates, E. L. & Kim, J. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 13, 642–650 (2018).

    Article  Google Scholar 

  84. Chen, Z., Liu, Y., Wei, W. & Ni, B. Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environ. Sci. Nano 6, 2332–2366 (2019).

    Article  Google Scholar 

  85. Kaur, P., Kushwaha, J. P. & Sangal, V. K. Electrocatalytic oxidative treatment of real textile wastewater in continuous reactor: degradation pathway and disposability study. J. Hazard. Mater. 346, 242–252 (2018).

    Article  Google Scholar 

  86. Kaur, P., Kushwaha, J. P. & Sangal, V. K. Evaluation and disposability study of actual textile wastewater treatment by electro-oxidation method using Ti/RuO2 anode. Process Saf. Environ. Prot. 111, 13–22 (2017).

    Article  Google Scholar 

  87. Brillas, E. & Martínez-Huitle, C. A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B Environ. 166167, 603–643 (2015).

    Article  Google Scholar 

  88. Yang, W. et al. Porous boron-doped diamond for efficient electrocatalytic elimination of azo dye Orange G. Sep. Purif. Technol. 293, 121100 (2022).

    Article  Google Scholar 

  89. Bavasso, I., Montanaro, D. & Petrucci, E. Ozone-based electrochemical advanced oxidation processes. Curr. Opin. Electrochem. 34, 101017 (2022).

    Article  Google Scholar 

  90. Zhi, D. et al. Remediation of persistent organic pollutants in aqueous systems by electrochemical activation of persulfates: a review. J. Environ. Manag. 260, 110125 (2020).

    Article  Google Scholar 

  91. Ghanbari, F. & Moradi, M. A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: electrical energy consumption and biodegradability improvement. J. Environ. Chem. Eng. 3, 499–506 (2015).

    Article  Google Scholar 

  92. Singh, R. L., Singh, P. K. & Singh, R. P. Enzymatic decolorization and degradation of azo dyes — a review. Int. Biodeter. Biodegr. 104, 21–31 (2015).

    Article  Google Scholar 

  93. Bhardwaj, P. et al. Laccase-assisted degradation of emerging recalcitrant compounds — a review. Bioresour. Technol. 364, 128031 (2022).

    Article  Google Scholar 

  94. Yadav, A. et al. Decolourisation of textile dye by laccase: process evaluation and assessment of its degradation bioproducts. Bioresour. Technol. 340, 125591 (2021).

    Article  Google Scholar 

  95. Khalid, N., Kalsoom, U., Ahsan, Z. & Bilal, M. Non-magnetic and magnetically responsive support materials immobilized peroxidases for biocatalytic degradation of emerging dye pollutants — a review. Int. J. Biol. Macromol. 207, 387–401 (2022).

    Article  Google Scholar 

  96. Wang, M., Mohanty, S. K. & Mahendra, S. Nanomaterial-supported enzymes for water purification and monitoring in point-of-use water supply systems. Acc. Chem. Res. 52, 876–885 (2019).

    Article  Google Scholar 

  97. Liang, S. et al. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: an update review. Coord. Chem. Rev. 406, 213149 (2020).

    Article  Google Scholar 

  98. Wang, J., Yu, S., Feng, F. & Lu, L. Simultaneous purification and immobilization of laccase on magnetic zeolitic imidazolate frameworks: recyclable biocatalysts with enhanced stability for dye decolorization. Biochem. Eng. J. 150, 107285 (2019).

    Article  Google Scholar 

  99. Chen, K. & Wu, C. Designed fabrication of biomimetic metal-organic frameworks for catalytic applications. Coord. Chem. Rev. 378, 445–465 (2019).

    Article  Google Scholar 

  100. Kapoor, R. T. et al. Exploiting microbial biomass in treating azo dyes contaminated wastewater: mechanism of degradation and factors affecting microbial efficiency. J. Water Process Eng. 43, 102255 (2021).

    Article  Google Scholar 

  101. Franca, R. D. G. et al. Oerskovia paurometabola can efficiently decolorize azo dye Acid Red 14 and remove its recalcitrant metabolite. Ecotoxicol. Environ. Saf. 191, 110007 (2020).

    Article  Google Scholar 

  102. Cui, D. et al. Microbial community structures in mixed bacterial consortia for azo dye treatment under aerobic and anaerobic conditions. J. Hazard. Mater. 221222, 185–192 (2012).

    Article  Google Scholar 

  103. Sen, S. K., Raut, S., Bandyopadhyay, P. & Raut, S. Fungal decolouration and degradation of azo dyes: a review. Fungal Biol. Rev. 30, 112–133 (2016).

    Article  Google Scholar 

  104. Radha, K. V., Regupathi, I., Arunagiri, A. & Murugesan, T. Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Process Biochem. 40, 3337–3345 (2005).

    Article  Google Scholar 

  105. Zhao, X. & Hardin, I. R. HPLC and spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. Dye. Pigment. 73, 322–325 (2007).

    Article  Google Scholar 

  106. Blánquez, P. et al. Mechanism of textile metal dye biotransformation by Trametes versicolor. Water Res. 38, 2166–2172 (2004).

    Article  Google Scholar 

  107. Liu, J. et al. Lignin waste as co-substrate on decolorization of azo dyes by Ganoderma lucidum. J. Taiwan Inst. Chem. Eng. 122, 85–92 (2021).

    Article  Google Scholar 

  108. Kalpana, D. et al. Biodecolorization and biodegradation of reactive levafix blue E-RA granulate dye by the white rot fungus Irpex lacteus. J. Environ. Manag. 111, 142–149 (2012).

    Article  Google Scholar 

  109. Eichlerová, I. & Baldrian, P. Ligninolytic enzyme production and decolorization capacity of synthetic dyes by saprotrophic white rot, brown rot, and litter decomposing basidiomycetes. J. Fungi 6, 301 (2020).

    Article  Google Scholar 

  110. Ihsanullah, I. et al. Bioremediation of dyes: current status and prospects. J. Water Process Eng. 38, 101680 (2020).

    Article  Google Scholar 

  111. Guo, G. et al. Aerobic decolorization and detoxification of acid scarlet GR by a newly isolated salt-tolerant yeast strain Galactomyces geotrichum GG. Int. Biodeterior. Biodegrad. 145, 104818 (2019).

    Article  Google Scholar 

  112. Rambabu, K. et al. Phycoremediation for carbon neutrality and circular economy: potential, trends, and challenges. Bioresour. Technol. 367, 128257 (2023).

    Article  Google Scholar 

  113. Sarkar, P. & Dey, A. Phycoremediation — an emerging technique for dye abatement: an overview. Process Saf. Environ. Prot. 147, 214–225 (2021).

    Article  Google Scholar 

  114. Chan, S. S. et al. Recent advances biodegradation and biosorption of organic compounds from wastewater: microalgae-bacteria consortium — a review. Bioresour. Technol. 344, 126159 (2022).

    Article  Google Scholar 

  115. Li, S. et al. Recent advances of algae-bacteria consortia in aquatic remediation. Crit. Rev. Environ. Sci. Technol. 53, 315–339 (2023).

    Article  Google Scholar 

  116. Sun, J. et al. Sequential decolorization of azo dye and mineralization of decolorization liquid coupled with bioelectricity generation using a pH self-neutralized photobioelectrochemical system operated with polarity reversion. J. Hazard. Mater. 289, 108–117 (2015).

    Article  Google Scholar 

  117. Kurade, M. B. et al. Phytoremediation as a green biotechnology tool for emerging environmental pollution: a step forward towards sustainable rehabilitation of the environment. Chem. Eng. J. 415, 129040 (2021).

    Article  Google Scholar 

  118. Hou, D. et al. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 1, 366–381 (2020).

    Article  Google Scholar 

  119. Khandare, R. V. & Govindwar, S. P. Phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnol. Adv. 33, 1697–1714 (2015).

    Article  Google Scholar 

  120. Patil, A. V. et al. Sesuvium portulacastrum (L.) L.: a potential halophyte for the degradation of toxic textile dye, Green HE4B. Planta. 235, 1051–1063 (2012).

    Article  Google Scholar 

  121. Nawab, B. et al. Technical viability of constructed wetland for treatment of dye wastewater in Gadoon Industrial Estate, Khyber Pakhtunkhwa, Pakistan. Wetlands. 38, 1097–1105 (2018).

    Article  Google Scholar 

  122. Devi, A. et al. in Advances in Microbe-Assisted Phytoremediation of Polluted Sites (eds Bauddh, K. & Ma, Y.) 3–26 (Elsevier, 2022).

  123. Kadam, S. K. et al. Construction and implementation of floating wetpark as effective constructed wetland for industrial textile wastewater treatment. J. Hazard. Mater. 424, 127710 (2022).

    Article  Google Scholar 

  124. Msemwa, G. G., Ibrahim, M. G., Fujii, M. & Nasr, M. Phytomanagement of textile wastewater for dual biogas and biochar production: a techno-economic and sustainable approach. J. Environ. Manag. 322, 116097 (2022).

    Article  Google Scholar 

  125. Dutta, S., Gupta, B., Srivastava, S. K. & Gupta, A. K. Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater. Adv. 2, 4497–4531 (2021).

    Article  Google Scholar 

  126. Qiu, B. et al. Application of biochar for the adsorption of organic pollutants from wastewater: modification strategies, mechanisms and challenges. Sep. Purif. Technol. 300, 121925 (2022).

    Article  Google Scholar 

  127. Shi, Y. et al. A review on selective dye adsorption by different mechanisms. J. Environ. Chem. Eng. 10, 108639 (2022).

    Article  Google Scholar 

  128. Azari, A. et al. Comprehensive systematic review and meta-analysis of dyes adsorption by carbon-based adsorbent materials: classification and analysis of last decade studies. Chemosphere 250, 126238 (2020).

    Article  Google Scholar 

  129. He, M. et al. Waste-derived biochar for water pollution control and sustainable development. Nat. Rev. Earth Environ. 3, 444–460 (2022).

    Article  Google Scholar 

  130. Amalina, F. et al. Dyes removal from textile wastewater by agricultural waste as an absorbent — a review. Clean. Waste Syst. 3, 100051 (2022).

    Article  Google Scholar 

  131. Kausar, A. et al. Dyes adsorption using clay and modified clay: a review. J. Mol. Liq. 256, 395–407 (2018).

    Article  Google Scholar 

  132. Hussain, Z. et al. Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes. J. Hazard. Mater. 422, 126778 (2022).

    Article  Google Scholar 

  133. Uddin, M. J., Ampiaw, R. E. & Lee, W. Adsorptive removal of dyes from wastewater using a metal-organic framework: a review. Chemosphere 284, 131314 (2021).

    Article  Google Scholar 

  134. Wang, J. & Zhuang, S. Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 400, 213046 (2019).

    Article  Google Scholar 

  135. Zhang, L. et al. Facile synthesis of ultrastable porous aromatic frameworks by Suzuki-Miyaura coupling reaction for adsorption removal of organic dyes. Chem. Eur. J. 25, 3903–3908 (2019).

    Article  Google Scholar 

  136. Samanta, P., Desai, A. V., Let, S. & Ghosh, S. K. Advanced porous materials for sensing, capture and detoxification of organic pollutants toward water remediation. ACS Sustain. Chem. Eng. 7, 7456–7478 (2019).

    Article  Google Scholar 

  137. Alventosa-deLara, E. et al. Ultrafiltration ceramic membrane performance during the treatment of model solutions containing dye and salt. Sep. Purif. Technol. 129, 96–105 (2014).

    Article  Google Scholar 

  138. Huang, Y. & Feng, X. Polymer-enhanced ultrafiltration: fundamentals, applications and recent developments. J. Membr. Sci. 586, 53–83 (2019).

    Article  Google Scholar 

  139. Sarkar, B. Micellar enhanced ultrafiltration in the treatment of dye wastewater: fundamentals, state-of-the-art and future perspectives. Groundw. Sustain. Dev. 17, 100730 (2022).

    Article  Google Scholar 

  140. Koyuncu, I., Topacik, D. & Wiesner, M. R. Factors influencing flux decline during nanofiltration of solutions containing dyes and salts. Water Res. 38, 432–440 (2004).

    Article  Google Scholar 

  141. Van der Bruggen, B., Daems, B., Wilms, D. & Vandecasteele, C. Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry. Sep. Purif. Technol. 2223, 519–528 (2001).

    Article  Google Scholar 

  142. Wenten, I. G. & Khoiruddin Reverse osmosis applications: prospect and challenges. Desalination 391, 112–125 (2016).

    Article  Google Scholar 

  143. Alihemati, Z. et al. Current status and challenges of fabricating thin film composite forward osmosis membrane: a comprehensive roadmap. Desalination 491, 114557 (2020).

    Article  Google Scholar 

  144. Li, M. et al. Concentration and recovery of dyes from textile wastewater using a self-standing, support-free forward osmosis membrane. Environ. Sci. Technol. 53, 3078–3086 (2019).

    Article  Google Scholar 

  145. Lutchmiah, K. et al. Forward osmosis for application in wastewater treatment: a review. Water Res. 58, 179–197 (2014).

    Article  Google Scholar 

  146. Singh, S. K., Sharma, C. & Maiti, A. A comprehensive review of standalone and hybrid forward osmosis for water treatment: membranes and recovery strategies of draw solutions. J. Environ. Chem. Eng. 9, 105473 (2021).

    Article  Google Scholar 

  147. Li, M., Li, K., Wang, L. & Zhang, X. Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: performance and economic evaluation. Water Res. 172, 115488 (2020).

    Article  Google Scholar 

  148. Sbardella, L. et al. Optimization of pilot scale forward osmosis process integrated with electrodialysis to concentrate landfill leachate. Chem. Eng. J. 434, 134448 (2022).

    Article  Google Scholar 

  149. Mahto, A. et al. Forward osmosis for industrial effluents treatment — sustainability considerations. Sep. Purif. Technol. 254, 117568 (2021).

    Article  Google Scholar 

  150. Silva, R. D. S. et al. Membrane distillation: experimental evaluation of liquid entry pressure in commercial membranes with textile dye solutions. J. Water Process Eng. 44, 102339 (2021).

    Article  Google Scholar 

  151. Choudhury, M. R., Anwar, N., Jassby, D. & Rahaman, M. S. Fouling and wetting in the membrane distillation driven wastewater reclamation process — a review. Adv. Colloid Interface Sci. 269, 370–399 (2019).

    Article  Google Scholar 

  152. Lin, J. et al. Durable superhydrophobic polyvinylidene fluoride membranes via facile spray-coating for effective membrane distillation. Desalination 538, 115925 (2022).

    Article  Google Scholar 

  153. González, D., Amigo, J. & Suárez, F. Membrane distillation: perspectives for sustainable and improved desalination. Renew. Sustain. Energy Rev. 80, 238–259 (2017).

    Article  Google Scholar 

  154. Xue, C. et al. Acid blue 9 desalting using electrodialysis. J. Membr. Sci. 493, 28–36 (2015).

    Article  Google Scholar 

  155. Lin, J. et al. Integrated loose nanofiltration-electrodialysis process for sustainable resource extraction from high-salinity textile wastewater. J. Hazard. Mater. 419, 126505 (2021).

    Article  Google Scholar 

  156. Lewis, S. R. et al. Reactive nanostructured membranes for water purification. Proc. Natl Acad. Sci. USA 108, 8577–8582 (2011).

    Article  Google Scholar 

  157. Wang, H. et al. Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nat. Commun. 10, 4204 (2019).

    Article  Google Scholar 

  158. Norfarhana, A. S., Ilyas, R. A. & Ngadi, N. A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydr. Polym. 291, 119563 (2022).

    Article  Google Scholar 

  159. Sirajudheen, P. et al. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water — a comprehensive review. Carbohydr. Polym. 273, 118604 (2021).

    Article  Google Scholar 

  160. Zhao, J. et al. Highly-efficient PVDF adsorptive membrane filtration based on chitosan@CNTs-COOH simultaneous removal of anionic and cationic dyes. Carbohydr. Polym. 274, 118664 (2021).

    Article  Google Scholar 

  161. Fang, J., Chen, Y., Fang, C. & Zhu, L. Regenerable adsorptive membranes prepared by mussel-inspired co-deposition for aqueous dye removal. Sep. Purif. Technol. 281, 119876 (2022).

    Article  Google Scholar 

  162. Hao, S. et al. Progress in adsorptive membranes for separation — a review. Sep. Purif. Technol. 255, 117772 (2021).

    Article  Google Scholar 

  163. Wang, Z. et al. Microporous polymer adsorptive membranes with high processing capacity for molecular separation. Nat. Commun. 13, 4169 (2022).

    Article  Google Scholar 

  164. İlyasoglu, G., Kose-Mutlu, B., Mutlu-Salmanli, O. & Koyuncu, I. Removal of organic micropollutants by adsorptive membrane. Chemosphere 302, 134775 (2022).

    Article  Google Scholar 

  165. Qing, W. et al. Functional catalytic membrane development: a review of catalyst coating techniques. Adv. Colloid Interface Sci. 282, 102207 (2020).

    Article  Google Scholar 

  166. Barbhuiya, N. H., Misra, U. & Singh, S. P. Biocatalytic membranes for combating the challenges of membrane fouling and micropollutants in water purification: a review. Chemosphere 286, 131757 (2022).

    Article  Google Scholar 

  167. Li, N. et al. Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: a review. J. Hazard. Mater. 414, 125478 (2021).

    Article  Google Scholar 

  168. Lu, N. et al. Bone/muscle-inspired polymer porous matrix toughened carbon nanofibrous catalytic membranes for robust emerging contaminants removal. Chem. Eng. J. 442, 136069 (2022).

    Article  Google Scholar 

  169. Asif, M. B., Zhang, S., Qiu, L. & Zhang, Z. Ultrahigh-permeance functionalized boron nitride membrane for nanoconfined heterogeneous catalysis. Chem. Catal. 2, 550–562 (2022).

    Article  Google Scholar 

  170. Meng, C. et al. Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels. Nat. Commun. 13, 4010 (2022).

    Article  Google Scholar 

  171. Shi, Y. et al. Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light? J. Membr. Sci. 584, 364–392 (2019).

    Article  Google Scholar 

  172. Lv, Y. et al. Photocatalytic nanofiltration membranes with self-cleaning property for wastewater treatment. Adv. Funct. Mater. 27, 1700251 (2017).

    Article  Google Scholar 

  173. Mao, W. et al. Core-shell structured TiO2@polydopamine for highly active visible-light photocatalysis. Chem. Commun. 52, 7122–7125 (2016).

    Article  Google Scholar 

  174. Zhang, C. et al. Polydopamine-coated porous substrates as a platform for mineralized β-FeOOH nanorods with photocatalysis under sunlight. ACS Appl. Mater. Interfaces 7, 11567–11574 (2015).

    Article  Google Scholar 

  175. Zhu, X. & Jassby, D. Electroactive membranes for water treatment: enhanced treatment functionalities, energy considerations, and future challenges. Acc. Chem. Res. 52, 1177–1186 (2019).

    Article  Google Scholar 

  176. Barbhuiya, N. H., Misra, U. & Singh, S. P. Synthesis, fabrication, and mechanism of action of electrically conductive membranes: a review. Environ. Sci. Water Res. Technol. 7, 671–705 (2021).

    Article  Google Scholar 

  177. Liu, Y. et al. Recent advances on electroactive CNT-based membranes for environmental applications: the perfect match of electrochemistry and membrane separation. Chin. Chem. Lett. 31, 2539–2548 (2020).

    Article  Google Scholar 

  178. Vecitis, C. D., Gao, G. & Liu, H. Electrochemical carbon nanotube filter for adsorption, desorption, and oxidation of aqueous dyes and anions. J. Phys. Chem. C 115, 3621–3629 (2011).

    Article  Google Scholar 

  179. Luo, J. et al. Biocatalytic membrane: go far beyond enzyme immobilization. Eng. Life Sci. 20, 441–450 (2020).

    Article  Google Scholar 

  180. Morthensen, S. T., Luo, J., Meyer, A. S., Jørgensen, H. & Pinelo, M. High performance separation of xylose and glucose by enzyme assisted nanofiltration. J. Membr. Sci. 492, 107–115 (2015).

    Article  Google Scholar 

  181. Li, S., Luo, J. & Wan, Y. Regenerable biocatalytic nanofiltration membrane for aquatic micropollutants removal. J. Membr. Sci. 549, 120–128 (2018).

    Article  Google Scholar 

  182. Zhu, Y. et al. Covalent laccase immobilization on the surface of poly(vinylidene fluoride) polymer membrane for enhanced biocatalytic removal of dyes pollutants from aqueous environment. Colloids Surf. B Biointerfaces 191, 111025 (2020).

    Article  Google Scholar 

  183. Erkanlı, M., Yilmaz, L., Çulfaz-Emecen, P. Z. & Yetis, U. Brackish water recovery from reactive dyeing wastewater via ultrafiltration. J. Clean. Prod. 165, 1204–1214 (2017).

    Article  Google Scholar 

  184. Metecan, A., Cihanoğlu, A. & Alsoy Altinkaya, S. A positively charged loose nanofiltration membrane fabricated through complexing of alginate and polyethyleneimine with metal ions on the polyamideimide support for dye desalination. Chem. Eng. J. 416, 128946 (2021).

    Article  Google Scholar 

  185. Lin, J. et al. Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment. J. Membr. Sci. 514, 217–228 (2016).

    Article  Google Scholar 

  186. Feng, X. et al. Recent advances of loose nanofiltration membranes for dye/salt separation. Sep. Purif. Technol. 285, 120228 (2022).

    Article  Google Scholar 

  187. Lin, J. et al. Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. J. Membr. Sci. 477, 183–193 (2015).

    Article  Google Scholar 

  188. Guo, S., Wan, Y., Chen, X. & Luo, J. Loose nanofiltration membrane custom-tailored for resource recovery. Chem. Eng. J. 409, 127376 (2021).

    Article  Google Scholar 

  189. Li, X. et al. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: a review. J. Membr. Sci. 640, 119765 (2021).

    Article  Google Scholar 

  190. Jin, P. et al. Erythritol-based polyester loose nanofiltration membrane with fast water transport for efficient dye/salt separation. Chem. Eng. J. 406, 126796 (2021).

    Article  Google Scholar 

  191. Boo, C. et al. High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery. Environ. Sci. Technol. 52, 7279–7288 (2018).

    Article  Google Scholar 

  192. Pei, T. et al. Loose nanofiltration membranes based on interfacial glutaraldehyde-amine polymerization for fast and highly selective dye/salt separation. Chem. Eng. J. 450, 138057 (2022).

    Article  Google Scholar 

  193. Zhang, Q. et al. Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated TiO2 nanoparticles. Appl. Surf. Sci. 410, 494–504 (2017).

    Article  Google Scholar 

  194. Zhang, Z., Fan, K., Liu, Y. & Xia, S. A review on polyester and polyester-amide thin film composite nanofiltration membranes: synthesis, characteristics and applications. Sci. Total Environ. 858, 159922 (2023).

    Article  Google Scholar 

  195. Miao, J., Zhang, L. & Lin, H. A novel kind of thin film composite nanofiltration membrane with sulfated chitosan as the active layer material. Chem. Eng. Sci. 87, 152–159 (2013).

    Article  Google Scholar 

  196. Zhao, S. & Wang, Z. A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination. J. Membr. Sci. 524, 214–224 (2017).

    Article  Google Scholar 

  197. Ye, C. et al. Sulfated polyelectrolyte complex nanoparticles structured nanofiltration membrane for dye desalination. Chem. Eng. J. 307, 526–536 (2017).

    Article  Google Scholar 

  198. Bengani-Lutz, P., Zaf, R. D., Culfaz-Emecen, P. Z. & Asatekin, A. Extremely fouling resistant zwitterionic copolymer membranes with ~1nm pore size for treating municipal, oily and textile wastewater streams. J. Membr. Sci. 543, 184–194 (2017).

    Article  Google Scholar 

  199. Yu, S. et al. Application of thin-film composite hollow fiber membrane to submerged nanofiltration of anionic dye aqueous solutions. Sep. Purif. Technol. 88, 121–129 (2012).

    Article  Google Scholar 

  200. Li, Y. et al. Loose nanofiltration membrane with highly-branched SPEI/PEI assembly for dye/salt textile wastewater treatment. J. Environ. Chem. Eng. 9, 106371 (2021).

    Article  Google Scholar 

  201. Yang, H. et al. Dopamine: just the right medicine for membranes. Adv. Funct. Mater. 28, 1705327 (2018).

    Article  Google Scholar 

  202. Ye, W. et al. Elevated nanofiltration performance via mussel-inspired co-deposition for sustainable resource extraction from landfill leachate concentrate. Chem. Eng. J. 388, 124200 (2020).

    Article  Google Scholar 

  203. Ye, W. et al. High-flux nanofiltration membranes tailored by bio-inspired co-deposition of hydrophilic g-C3N4 nanosheets for enhanced selectivity towards organics and salts. Environ. Sci. Nano 6, 2958–2967 (2019).

    Article  Google Scholar 

  204. Zhang, C. et al. CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability. Angew. Chem. Int. Ed. 55, 3054–3057 (2016).

    Article  Google Scholar 

  205. Huang, L. et al. Low-pressure loose GO composite membrane intercalated by CNT for effective dye/salt separation. Sep. Purif. Technol. 256, 117839 (2021).

    Article  Google Scholar 

  206. Liu, L., Qu, S., Yang, Z. & Chen, Y. Fractionation of dye/NaCl mixtures using loose nanofiltration membranes based on the incorporation of WS2 in self-assembled layer-by-layer polymeric electrolytes. Ind. Eng. Chem. Res. 59, 18160–18169 (2020).

    Article  Google Scholar 

  207. Ding, L. et al. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56, 1825–1829 (2017).

    Article  Google Scholar 

  208. Ang, H. & Hong, L. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration. ACS Appl. Mater. Interfaces 9, 28079–28088 (2017).

    Article  Google Scholar 

  209. Wang, S. et al. Two-dimensional nanochannel membranes for molecular and ionic separations. Chem. Soc. Rev. 49, 1071–1089 (2020).

    Article  Google Scholar 

  210. Safarpour, M., Arefi-Oskoui, S. & Khataee, A. A review on two-dimensional metal oxide and metal hydroxide nanosheets for modification of polymeric membranes. J. Ind. Eng. Chem. 82, 31–41 (2020).

    Article  Google Scholar 

  211. Dong, L. et al. NH2-Fe3O4-regulated graphene oxide membranes with well-defined laminar nanochannels for desalination of dye solutions. Desalination 476, 114227 (2020).

    Article  Google Scholar 

  212. Zhu, L. et al. Effect of TiO2 content on the properties of polysulfone nanofiltration membranes modified with a layer of TiO2-graphene oxide. Sep. Purif. Technol. 242, 116770 (2020).

    Article  Google Scholar 

  213. Zhang, X. et al. In-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation. J. Membr. Sci. 581, 321–330 (2019).

    Article  Google Scholar 

  214. Gao, S. J., Qin, H., Liu, P. & Jin, J. SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules. J. Mater. Chem. A 3, 6649–6654 (2015).

    Article  Google Scholar 

  215. Abate, M. T. et al. Supercritical CO2 dyeing of polyester fabric with photochromic dyes to fabricate UV sensing smart textiles. Dye. Pigment. 183, 108671 (2020).

    Article  Google Scholar 

  216. Shi, F. et al. Eco-friendly pretreatment to the coloration enhancement of reactive dye digital inkjet printing on wool fabrics. ACS Sustain. Chem. Eng. 9, 10361–10369 (2021).

    Article  Google Scholar 

  217. Uddin, M. A. et al. Textile colouration with natural colourants: a review. J. Clean. Prod. 349, 131489 (2022).

    Article  Google Scholar 

  218. Benbelkhir, F. Z. & Medjekal, S. Microalgal carotenoids: a promising alternative to synthetic dyes. Algal Res. 66, 102823 (2022).

    Article  Google Scholar 

  219. Li, Y. et al. Shear-induced assembly of liquid colloidal crystals for large-scale structural coloration of textiles. Adv. Funct. Mater. 31, 2010746 (2021).

    Article  Google Scholar 

  220. Routoula, E. & Patwardhan, S. V. Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential. Environ. Sci. Technol. 54, 647–664 (2020).

    Article  Google Scholar 

  221. Cossio, C. et al. EVAS — a practical tool to assess the sustainability of small wastewater treatment systems in low and lower-middle-income countries. Sci. Total Environ. 746, 140938 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

Y.W. appreciates financial support from the National Key Research and Development Program of China (2021YFC3201400). M.X. thanks the support from the Royal Society (IEC\NSFC\211021), the Royal Academy of Engineering (IF2223B-104) and the Leverhulme Trust (RPG-2022-177). D.H.S. acknowledges the support of Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20224000000100) and the research support from the Korea Institute of Energy Technology. J. Lin would like to thank Q. Liang and G. Hu from Ganjiang Innovation Academy, Chinese Academy of Sciences (China), for their discussion on electrocatalysis.

Author information

Authors and Affiliations

Authors

Contributions

J. Lin, W.Y. and M.X. contributed equally to all aspects of the article. J. Lin, W.Y., M.X., Y.W. and B.V.B. researched data for this review. J. Lin, W.Y., M.X., Y.W. and B.V.B. made a substantial contribution to the discussion of content. J. Lin, W.Y., M.X., Y.W. and B.V.B. contributed to the writing and figure drafting of the review. J. Lin, W.Y., M.X., D.H.S., J. Luo, Y.W. and B.V.B. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Yinhua Wan or Bart Van der Bruggen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Y. Shi, Y. Zhou, S. Govindwar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Biochar

A microporous carbon-rich material that is produced by pyrolysis of biomass wastes in the absence of oxygen.

Chromosomal aberrations

Mutations in chromosome structure or number.

Co-deposition

The simultaneous or combined deposition of multiple substances or materials onto a surface.

Constructed wetlands

(CWs). Engineered artificial systems designed to simulate natural wetlands for wastewater treatment.

Covalent stack

Arrangement of atoms within the material, particularly in the vertical direction.

Extracellular polymeric substances

Natural polymers of high molecular weight secreted by microorganisms, which are mainly composed of polysaccharides, proteins, extracellular DNA and lipids.

Halophytes

Salt-tolerant plants that can grow in the highly saline aqueous environment.

Metal organic frameworks

(MOFs). Coordination networks with organic ligands containing potential voids.

Michael addition

A chemical reaction in which a molecule with a double bond between a carbon atom and an oxygen atom (a carbonyl group) reacts with a nucleophile to form a new chemical bond.

Molecular weight cut-offs

(MWCOs). Molecular weight of non-charged organic compounds that is rejected by the membrane at the level of 90%.

Phytotoxicity

Toxic effect of synthetic dyes that inhibits seed germination and/or plant growth.

Polymer of intrinsic microporosity

A continuous polymeric network of interconnected intermolecular voids.

Schiff base reaction

A chemical reaction in which a primary amine (a compound containing an –NH2 group) reacts with a carbonyl compound, typically an aldehyde or a ketone, to produce a Schiff base.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Ye, W., Xie, M. et al. Environmental impacts and remediation of dye-containing wastewater. Nat Rev Earth Environ 4, 785–803 (2023). https://doi.org/10.1038/s43017-023-00489-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00489-8

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene