Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ancient dental calculus reveals oral microbiome shifts associated with lifestyle and disease in Great Britain

Abstract

The prevalence of chronic, non-communicable diseases has risen sharply in recent decades, especially in industrialized countries. While several studies implicate the microbiome in this trend, few have examined the evolutionary history of industrialized microbiomes. Here we sampled 235 ancient dental calculus samples from individuals living in Great Britain (2200 bce to 1853 ce), including 127 well-contextualized London adults. We reconstructed their microbial history spanning the transition to industrialization. After controlling for oral geography and technical biases, we identified multiple oral microbial communities that coexisted in Britain for millennia, including a community associated with Methanobrevibacter, an anaerobic Archaea not commonly prevalent in the oral microbiome of modern industrialized societies. Calculus analysis suggests that oral hygiene contributed to oral microbiome composition, while microbial functions reflected past differences in diet, specifically in dairy and carbohydrate consumption. In London samples, Methanobrevibacter-associated microbial communities are linked with skeletal markers of systemic diseases (for example, periostitis and joint pathologies), and their disappearance is consistent with temporal shifts, including the arrival of the Second Plague Pandemic. This suggests pre-industrialized microbiomes were more diverse than previously recognized, enhancing our understanding of chronic, non-communicable disease origins in industrialized populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographical and temporal distribution of samples.
Fig. 2: Oral geography and microbial compositions.
Fig. 3: Exploration of dominant taxa and communities.
Fig. 4: Abundance of dietary microbial functions in ancient Britain.

Similar content being viewed by others

Data availability

All trimmed and merged DNA sequences (fastq) are available in the SRA database (BioProject PRJNA780005) of NCBI. The 2017 NCBI nr database and the 2017 NCBI RefSeq GCS database were used in this study. Unmerged reads can be made available upon request, as only merged sequences were assessed in full for this publication.

Code availability

The analysis pipelines are available in the microARCH GitHub page (@microARCHlab/BritishDentalCalculus_2021), as well as in https://github.com/michellepistner/ancientDNA.

References

  1. Sonnenburg, E. D. & Sonnenburg, J. L. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 17, 383–390 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Broussard, J. L. & Devkota, S. The changing microbial landscape of Western society: diet, dwellings and discordance. Mol. Metab. 5, 737–742 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abegunde, D. O., Mathers, C. D., Adam, T., Ortegon, M. & Strong, K. The burden and costs of chronic diseases in low-income and middle-income countries. Lancet 370, 1929–1938 (2007).

    Article  PubMed  Google Scholar 

  4. Mathers, C. D. & Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3, e442 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Martínez, I. et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).

    Article  PubMed  Google Scholar 

  8. Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl Acad. Sci. USA 113, 10376–10381 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Obregon-Tito, A. J. et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat. Commun. 6, 6505 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Lokmer, A. et al. Response of the human gut and saliva microbiome to urbanization in Cameroon. Sci. Rep. 10, 2856 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jha, A. R. et al. Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biol. 16, e2005396 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vangay, P. et al. U.S. immigration westernizes the human gut microbiome. Cell 175, 962–972.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bello, M. G. D., Knight, R., Gilbert, J. A. & Blaser, M. J. Preserving microbial diversity. Science 362, 33–34 (2018).

    Article  PubMed  Google Scholar 

  14. Skelly, E., Kapellas, K., Cooper, A. & Weyrich, L. S. Consequences of colonialism: a microbial perspective to contemporary Indigenous health. Am. J. Biol. Anthropol. 167, 423–437 (2018).

    Article  Google Scholar 

  15. Schnorr, S. L. Meanings, measurements, and musings on the significance of patterns in human microbiome variation. Curr. Opin. Genet. Dev. 53, 43–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Carmody, R. N., Sarkar, A. & Reese, A. T. Gut microbiota through an evolutionary lens. Science 372, 462–463 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Tsosie, K. S., Fox, K. & Yracheta, J. M. Genomics data: the broken promise is to Indigenous people. Nature 591, 529–529 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Wibowo, M. C. et al. Reconstruction of ancient microbial genomes from the human gut. Nature 594, 234–239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weyrich, L. S., Dobney, K. & Cooper, A. Ancient DNA analysis of dental calculus. J. Hum. Evol. 79, 119–124 (2015).

    Article  PubMed  Google Scholar 

  20. Weyrich, L. S. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Warinner, C., Speller, C. & Collins, M. J. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philos. Trans. R. Soc. Lond. B 370, 20130376 (2015).

    Article  Google Scholar 

  22. Hillmann, B. et al. Evaluating the information content of shallow shotgun metagenomics. mSystems 3, e00069-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu, Y. The Role of Epigenetic Modications and Microbiome Evolution in Bovid Adaptation to Environmental Changes. PhD thesis, University of Adelaide (2019).

  24. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Simón-Soro, A. et al. Microbial geography of the oral cavity. J. Dent. Res. 92, 616–621 (2013).

    Article  PubMed  Google Scholar 

  26. Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eisenhofer, R., Anderson, A., Dobney, K., Cooper, A. & Weyrich, L. S. Ancient microbial DNA in dental calculus: a new method for studying rapid human migration events. J. Isl. Coast. Archaeol. 14, 149–162 (2019).

    Article  Google Scholar 

  28. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Velsko, I. M. et al. Ancient dental calculus preserves signatures of biofilm succession and interindividual variation independent of dental pathology. PNAS Nexus 1, pgac148 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yates, J. A. F. et al. The evolution and changing ecology of the African hominid oral microbiome. Proc. Natl Acad. Sci. 118, e2021655118 (2021).

  31. Velsko, I. M., Gallois, S., Stahl, R., Henry, A. G. & Warinner, C. High conservation of the dental plaque microbiome across populations with differing subsistence strategies and levels of market integration. Mol. Ecol. https://doi.org/10.1111/mec.16988 (2023).

  32. Morton, J. T. et al. Uncovering the horseshoe effect in microbial analyses. mSystems 2, e00166-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Granehäll, L. et al. Metagenomic analysis of ancient dental calculus reveals unexplored diversity of oral archaeal Methanobrevibacter. Microbiome 9, 197 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Downes, J., Munson, M. A., Radford, D. R., Spratt, D. A. & Wade, W. G. Shuttleworthia satelles gen. nov., sp. nov., isolated from the human oral cavity. Int. J. Syst. Evol. Microbiol. 52, 1469–1475 (2002).

    PubMed  Google Scholar 

  35. Siqueira, J. F. & Rôças, I. N. Pseudoramibacter alactolyticus in primary endodontic infections. J. Endod. 29, 735–738 (2003).

    Article  PubMed  Google Scholar 

  36. Huang, S. et al. Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis. BMC Oral Health 11, 33 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gaci, N., Borrel, G., Tottey, W., O’Toole, P. W. & Brugère, J.-F. Archaea and the human gut: new beginning of an old story. World J. Gastroenterol. 20, 16062–16078 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Handsley-Davis, M. et al. Heritage-specific oral microbiota in Indigenous Australian dental calculus. Evol. Med. Public Health 10, 352–362 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Adler, C. J. et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat. Genet. 45, 450–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lepp, P. W. et al. Methanogenic Archaea and human periodontal disease. Proc. Natl Acad. Sci. USA 101, 6176–6181 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Creeth, J. E. et al. The effect of brushing time and dentifrice on dental plaque removal in vivo. J. Dent. Hyg. 83, 111–116 (2009).

    PubMed  Google Scholar 

  42. Zanatta, F. B., Bergoli, A. D., Werle, S. B. & Antoniazzi, R. P. Biofilm removal and gingival abrasion with medium and soft toothbrushes. Oral Health Prev. Dent. 9, 177–183 (2011).

    PubMed  Google Scholar 

  43. Mann, A. E. et al. Do I have something in my teeth? The trouble with genetic analyses of diet from archaeological dental calculus. Quat. Int. 653–654, 33–46 (2023).

    Article  Google Scholar 

  44. Ozga, A. T. & Ottoni, C. Dental calculus as a proxy for animal microbiomes. Quat. Int. 653–654, 47–52 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hillson, S. Archaeology and the study of teeth. Endeavour 10, 145–149 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Warinner, C. et al. Direct evidence of milk consumption from ancient human dental calculus. Sci. Rep. 4, 7104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ottoni, C. et al. Tracking the transition to agriculture in southern Europe through ancient DNA analysis of dental calculus. Proc. Natl Acad. Sci. USA 118, e2102116118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, Y.-H. et al. Progress in oral microbiome related to oral and systemic diseases: an update. Diagnostics 11, 1283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peng, X. et al. Oral microbiota in human systematic diseases. Int. J. Oral. Sci. 14, 1–11 (2022).

    Article  Google Scholar 

  52. Schuenemann, V. J. et al. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. Proc. Natl Acad. Sci. USA 108, E746–E752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shrewsbury, J. F. D. A History of Bubonic Plague in the British Isles (Cambridge Univ. Press, 2005).

  54. DeWitte, S. N. & Wood, J. W. Selectivity of Black Death mortality with respect to preexisting health. Proc. Natl Acad. Sci. USA 105, 1436–1441 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yaussy, S. L. & DeWitte, S. N. Calculus and survivorship in medieval London: the association between dental disease and a demographic measure of general health. Am. J. Phys. Anthropol. 168, 552–565 (2019).

    Article  PubMed  Google Scholar 

  56. DeWitte, S. N. Health in post-Black Death London (1350–1538): age patterns of periosteal new bone formation in a post-epidemic population. Am. J. Phys. Anthropol. 155, 260–267 (2014).

    Article  PubMed  Google Scholar 

  57. Moore, N. E. & Weyrich, L. S. A. in The Oral Microbiome: Methods and Protocols (ed. Adami, G. R.) 93–118 (Springer, 2021); https://doi.org/10.1007/978-1-0716-1518-8_7

  58. Brotherton, P. et al. Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat. Commun. 4, 1764 (2013).

    Article  PubMed  Google Scholar 

  59. Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Lindgreen, S. AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res. Notes 5, 337 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 8, 761–763 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mitra, S. et al. Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG. BMC Bioinform. 12, S21 (2011).

    Article  Google Scholar 

  65. Archer, L., Dawson, E., DeWitt, J., Seakins, A. & Wong, B. “Science capital”: a conceptual, methodological, and empirical argument for extending bourdieusian notions of capital beyond the arts. J. Res. Sci. Teach. 52, 922–948 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Stringer and R. Kruszynski of the Natural History Museum, London; S. Schiffels; D. Sayer; Oxford Archaeology East; M. Farrell of the Royal College of Surgeons of England; J. Pearson of the Inverness Museum; and all of the museums for access to samples. We also thank the Museum of London for allowing us to collect and destructively analyse archaeological dental calculus samples from their collections from London, particularly J. Bekvalac and R. Redfern. We would also like to acknowledge J. VanderBerg at EnDev Geographic for producing the map used in Fig. 1. A.C., C.A. and L.W. thank the Australian Research Council for research funding (DP110105038) and Laureate (FL140100260). The work was also supported by an Australian Research Council Future Fellowship Award to L.S.W. (FT180100407). This material is also based on work supported by the National Science Foundation Graduate Research Fellowship Program awarded to A.S.G. under Grant No. DGE1255832. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.G.F., N.G., A.C., K.D. and L.S.W. conceived of the study and developed the experimental design. A.C., A.G.F., C.A., K.B., K.D. and L.S.W. worked on sample acquisition. A.G.F. completed the laboratory analysis. A.S.G., A.G.F., S.W. and L.A. completed the bioinformatics and computational analysis. A.S.G., M.P.N., E.R.D., J.D.S. and L.S.W. performed the statistical analysis. A.S.G., A.G.F. and L.S.W. wrote the paper, and all authors edited and commented on the paper.

Corresponding author

Correspondence to Laura S. Weyrich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Marcus de Goffau, Aleksandar Kostic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text Sections 1–9 and Supplementary Figs. 1–19.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–23.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gancz, A.S., Farrer, A.G., Nixon, M.P. et al. Ancient dental calculus reveals oral microbiome shifts associated with lifestyle and disease in Great Britain. Nat Microbiol 8, 2315–2325 (2023). https://doi.org/10.1038/s41564-023-01527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01527-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing