Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Systematic mining of the human microbiome identifies antimicrobial peptides with diverse activity spectra

Abstract

Human-associated bacteria secrete modified peptides to control host physiology and remodel the microbiota species composition. Here we scanned 2,229 Human Microbiome Project genomes of species colonizing skin, gastrointestinal tract, urogenital tract, mouth and trachea for gene clusters encoding RiPPs (ribosomally synthesized and post-translationally modified peptides). We found 218 lanthipeptides and 25 lasso peptides, 70 of which were synthesized and expressed in E. coli and 23 could be purified and functionally characterized. They were tested for activity against bacteria associated with healthy human flora and pathogens. New antibiotics were identified against strains implicated in skin, nasal and vaginal dysbiosis as well as from oral strains selectively targeting those in the gut. Extended- and narrow-spectrum antibiotics were found against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Mining natural products produced by human-associated microbes will enable the elucidation of ecological relationships and may be a rich resource for antimicrobial discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genome mining and reconstruction of lanthipeptide gene clusters.
Fig. 2: RiPP modifications deduced by mass spectroscopy.
Fig. 3: Activity of RiPPs against human-derived bacterial species, including commensal and pathogenic strains.
Fig. 4: Structural and functional analyses of LANII-687 (left) and LANII-287 (right).

Similar content being viewed by others

Data availability

The RiPPs biosynthetic pathways found in this study are available in NCBI (https://www.ncbi.nlm.nih.gov/), with identifiers listed in Supplementary Table 5 and Source data. All DNA sequences are listed in Supplementary Table 5. Data supporting the findings of this study are available within the paper and supplementary materials. Additional data, strains and plasmids are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

Python scripts used for LC–MS processing have been released as open source software under the MIT license (GitHub repository: https://github.com/dantheand/msms_structure_annot).

References

  1. Sassone-Corsi, M. & Raffatellu, M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J. Immunol. 194, 4081–4087 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Heilbronner, S., Krismer, B., Brötz-Oesterhelt, H. & Peschel, A. The microbiome-shaping roles of bacteriocins. Nat. Rev. Microbiol. 19, 726–739 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Russell, A. H. & Truman, A. W. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides. Comput. Struct. Biotechnol. J. 18, 1838–1851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shepherd, E. S., DeLoache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kearney, S. M., Gibbons, S. M., Erdman, S. E. & Alm, E. J. Orthogonal dietary niche enables reversible engraftment of a gut bacterial commensal. Cell Rep. 24, 1842–1851 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Cotter, P. D., Paul Ross, R. & Hill, C. Bacteriocins—a viable alternative to antibiotics? Nat. Rev. Microbiol. 11, 95–105 (2012).

    Article  PubMed  Google Scholar 

  8. Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. https://doi.org/10.1039/d0np00027b (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Klaus, M. & Grininger, M. Engineering strategies for rational polyketide synthase design. Nat. Prod. Rep. 35, 1070–1081 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Cai, W. & Zhang, W. Engineering modular polyketide synthases for production of biofuels and industrial chemicals. Curr. Opin. Biotechnol. 50, 32–38 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Cubillos-Ruiz, A., Berta-Thompson, J. W., Becker, J. W., van der Donk, W. A. & Chisholm, S. W. Evolutionary radiation of lanthipeptides in marine cyanobacteria. Proc. Natl Acad. Sci. USA 114, E5424–E5433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sardar, D., Pierce, E., McIntosh, J. A. & Schmidt, E. W. Recognition sequences and substrate evolution in cyanobactin biosynthesis. ACS Synth. Biol. 4, 167–176 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, X. et al. A lanthipeptide library used to identify a protein–protein interaction inhibitor. Nat. Chem. Biol. 14, 375–380 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hetrick, K. J., Walker, M. C. & van der Donk, W. A. Development and application of yeast and phage display of diverse lanthipeptides. ACS Cent. Sci. 4, 458–467 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Urban, J. H. et al. Phage display and selection of lanthipeptides on the carboxy-terminus of the gene-3 minor coat protein. Nat. Commun. 8, 1500 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. King, A. M. et al. Selection for constrained peptides that bind to a single target protein. Nat. Commun. 12, 6343 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheung-Lee, W. L. & Link, A. J. Genome mining for lasso peptides: past, present, and future. J. Ind. Microbiol. Biotechnol. 46, 1371–1379 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. van Staden, A. D. P., van Zyl, W. F., Trindade, M., Dicks, L. M. T. & Smith, C. Therapeutic application of lantibiotics and other lanthipeptides: old and new findings. Appl. Environ. Microbiol. 87, e0018621 (2021).

    Article  PubMed  Google Scholar 

  19. Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

    Article  PubMed  Google Scholar 

  20. Ongpipattanakul, C. et al. Mechanism of action of ribosomally synthesized and post-translationally modified peptides. Chem. Rev. 122, 14722–14814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao, L., Do, T. & Link, A. J. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J. Ind. Microbiol. Biotechnol. https://doi.org/10.1093/jimb/kuab005 (2021).

  22. Hetrick, K. J. & van der Donk, W. A. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr. Opin. Chem. Biol. 38, 36–44 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barbour, A., Wescombe, P. & Smith, L. Evolution of lantibiotic salivaricins: new weapons to fight infectious diseases. Trends Microbiol. 28, 578–593 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Donia, M. S. et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158, 1402–1414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Metelev, M. et al. Acinetodin and klebsidin, RNA polymerase targeting lasso peptides produced by human isolates of Acinetobacter gyllenbergii and Klebsiella pneumoniae. ACS Chem. Biol. 12, 814–824 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Zhong, Z., He, B., Li, J. & Li, Y.-X. Challenges and advances in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs). Synth. Syst. Biotechnol. 5, 155–172 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. van Heel, A. J., de Jong, A., Montalbán-López, M., Kok, J. & Kuipers, O. P. BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res. 41, W448–453 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Blin, K., Kazempour, D., Wohlleben, W. & Weber, T. Improved lanthipeptide detection and prediction for antiSMASH. PLoS ONE 9, e89420 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mohimani, H. et al. Automated genome mining of ribosomal peptide natural products. ACS Chem. Biol. 9, 1545–1551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Merwin, N. J. et al. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products. Proc. Natl Acad. Sci. USA 117, 371–380 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Santos-Aberturas, J. et al. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Res. 47, 4624–4637 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tietz, J. I. et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13, 470–478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sugimoto, Y. et al. A metagenomic strategy for harnessing the chemical repertoire of the human microbiome. Science https://doi.org/10.1126/science.aax9176 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Walker, M. C. et al. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. BMC Genomics 21, 387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ongey, E. L. & Neubauer, P. Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb. Cell Fact. 15, 97 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wilson, M. R., Zha, L. & Balskus, E. P. Natural product discovery from the human microbiome. J. Biol. Chem. 292, 8546–8552 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bauman, K. D., Butler, K. S., Moore, B. S. & Chekan, J. R. Genome mining methods to discover bioactive natural products. Nat. Prod. Rep. https://doi.org/10.1039/d1np00032b (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ayikpoe, R. S. et al. A scalable platform to discover antimicrobials of ribosomal origin. Nat. Commun. 13, 6135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Temme, K., Zhao, D. & Voigt, C. A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc. Natl Acad. Sci. USA 109, 7085–7090 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Blin, K. et al. antiSMASH 4.0–improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45, W36–W41 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  Google Scholar 

  43. Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Glassey, E., King, A. M., Anderson, D. A., Zhang, Z. & Voigt, C. A. Functional expression of diverse post-translational peptide-modifying enzymes in Escherichia coli. PLoS One 17, e0266488 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli ‘Marionette’ strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Lou, C., Stanton, B., Chen, Y.-J., Munsky, B. & Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat. Biotechnol. 30, 1137–1142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shin, J., Zhang, S., Der, B. S., Nielsen, A. A. & Voigt, C. A. Programming Escherichia coli to function as a digital display. Mol. Syst. Biol. 16, e9401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, Q. et al. Structural investigation of ribosomally synthesized natural products by hypothetical structure enumeration and evaluation using tandem MS. Proc. Natl Acad. Sci. USA 111, 12031–12036 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dufour, A., Hindré, T., Haras, D. & Le Pennec, J.-P. The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol. Rev. 31, 134–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Knerr, P. J. & van der Donk, W. A. Chemical synthesis of the lantibiotic lacticin 481 reveals the importance of lanthionine stereochemistry. J. Am. Chem. Soc. 135, 7094–7097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smith, M., Kassam, Z., Edelstein, C., Burgess, J. & Alm, E. OpenBiome remains open to serve the medical community. Nat. Biotechnol. 32, 867 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Xie, L. et al. Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 303, 679–681 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Amabebe, E. & Anumba, D. O. C. The vaginal microenvironment: the physiologic role of lactobacilli. Front. Med. 5, 181 (2018).

    Article  Google Scholar 

  55. Petrova, M. I., Reid, G., Vaneechoutte, M. & Lebeer, S. Lactobacillus iners: friend or foe? Trends Microbiol. 25, 182–191 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Severgnini, M. et al. Gardnerella vaginalis clades in pregnancy: new insights into the interactions with the vaginal microbiome. PLoS ONE 17, e0269590 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vidor, C. J., Bulach, D., Awad, M. & Lyras, D. Paeniclostridium sordellii and Clostridioides difficile encode similar and clinically relevant tetracycline resistance loci in diverse genomic locations. BMC Microbiol. 19, 53 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Funke, G., von Graevenitz, A., Clarridge, J. E. 3rd & Bernard, K. A. Clinical microbiology of coryneform bacteria. Clin. Microbiol. Rev. 10, 125–159 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martinez-Martinez, L., Suarez, A. I., Rodriguez-Bano, J., Bernard, K. & Muniain, M. A. Clinical significance of Corynebacterium striatum isolated from human samples. Clin. Microbiol. Infect. 3, 634–639 (1997).

    Article  PubMed  Google Scholar 

  60. Brugger, S. D. et al. Dolosigranulum pigrum cooperation and competition in human nasal microbiota. mSphere 5, e00852-20 (2020).

  61. Rinninella, E. et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms https://doi.org/10.3390/microorganisms7010014 (2019).

  62. Antibiotic Resistance Threats in the United States, 2019 (US Centers for Disease Control and Prevention, 2019).

  63. Pettigrew, M. M. et al. Upper respiratory tract microbial communities, acute otitis media pathogens, and antibiotic use in healthy and sick children. Appl. Environ. Microbiol. 78, 6262–6270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kafil, H. S. & Asgharzadeh, M. Vancomycin-resistant Enteroccus faecium and Enterococcus faecalis isolated from education hospital of Iran. Maedica 9, 323–327 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. van den Hooven, H. W. et al. The structure of the lantibiotic lacticin 481 produced by Lactococcus lactis: location of the thioether bridges. FEBS Lett. 391, 317–322 (1996).

    Article  PubMed  Google Scholar 

  66. Walker, G. V., Heng, N. C. K., Carne, A., Tagg, J. R. & Wescombe, P. A. Salivaricin E and abundant dextranase activity may contribute to the anti-cariogenic potential of the probiotic candidate Streptococcus salivarius JH. Microbiology 162, 476–486 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Khan, S., Voordouw, M. J. & Hill, J. E. Competition among Gardnerella subgroups from the human vaginal microbiome. Front. Cell Infect. Microbiol. 9, 374 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. O’Neill, A. M. et al. Identification of a human skin commensal bacterium that selectively kills Cutibacterium acnes. J. Invest. Dermatol. 140, 1619–1628.e2 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Janek, D., Zipperer, A., Kulik, A., Krismer, B. & Peschel, A. High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors. PLoS Pathog. 12, e1005812 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kaur, H. et al. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature 593, 125–129 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Gavrish, E. et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol. 21, 509–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Krismer, B., Weidenmaier, C., Zipperer, A. & Peschel, A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat. Rev. Microbiol. 15, 675–687 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Ochi, K. & Hosaka, T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl. Microbiol. Biotechnol. 97, 87–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, X., Hindra & Elliot, M. A. Unlocking the trove of metabolic treasures: activating silent biosynthetic gene clusters in bacteria and fungi. Curr. Opin. Microbiol. 51, 9–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Frank, D. N. et al. The human nasal microbiota and Staphylococcus aureus carriage. PLoS ONE 5, e10598 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Otto, M. Staphylococci in the human microbiome: the role of host and interbacterial interactions. Curr. Opin. Microbiol. 53, 71–77 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Edlund, A. et al. Uncovering complex microbiome activities via metatranscriptomics during 24 hours of oral biofilm assembly and maturation. Microbiome 6, 217 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. van Hal, S. J., Lodise, T. P. & Paterson, D. L. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin. Infect. Dis. 54, 755–771 (2012).

    Article  PubMed  Google Scholar 

  80. King, E. A., McCoy, D., Desai, S., Nyirenda, T. & Bicking, K. Vancomycin-resistant enterococcal bacteraemia and daptomycin: are higher doses necessary? J. Antimicrob. Chemother. 66, 2112–2118 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Hegemann, J. D., Zimmermann, M., Xie, X. & Marahiel, M. A. Lasso peptides: an intriguing class of bacterial natural products. Acc. Chem. Res. 48, 1909–1919 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Piewngam, P. et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562, 532–537 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pinho-Ribeiro, F. A. et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173, 1083–1097.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Duan, Y. et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 575, 505–511 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meijerink, M. et al. Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLoS ONE 5, e10632 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Raffatellu, M. Learning from bacterial competition in the host to develop antimicrobials. Nat. Med. 24, 1097–1103 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Shi, B., Leung, D. Y. M., Taylor, P. A. & Li, H. Methicillin-resistant Staphylococcus aureus colonization is associated with decreased skin commensal bacteria in atopic dermatitis. J. Invest. Dermatol. 138, 1668–1671 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Strauss, J. et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm. Bowel Dis. 17, 1971–1978 (2011).

    Article  PubMed  Google Scholar 

  89. Ismail, Y. et al. Investigation of the enteric pathogenic potential of oral Campylobacter concisus strains isolated from patients with inflammatory bowel disease. PLoS ONE 7, e38217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Farrell, J. J. et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61, 582–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Fan, X. et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 67, 120–127 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Lu, H. et al. Deep sequencing reveals microbiota dysbiosis of tongue coat in patients with liver carcinoma. Sci. Rep. 6, 33142 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bajaj, J. S. et al. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy. Hepatology 62, 1260–1271 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Li, B. et al. Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice. Int. J. Oral. Sci. 11, 10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bajer, L. et al. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J. Gastroenterol. 23, 4548–4558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brugger, S. D., Bomar, L. & Lemon, K. P. Commensal–pathogen interactions along the human nasal passages. PLoS Pathog. 12, e1005633 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zheng, J., Ganzle, M. G., Lin, X. B., Ruan, L. & Sun, M. Diversity and dynamics of bacteriocins from human microbiome. Environ. Microbiol. 17, 2133–2143 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Guzzetta, M., Williamson, A. & Duong, S. Clostridium sordellii as an uncommon cause of fatal toxic shock syndrome in a postpartum 33-year-old asian woman, and the need for antepartum screening for this clostridia species in the general female population. Lab. Med. 47, 251–254 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Laux, C., Peschel, A. & Krismer, B. Staphylococcus aureus colonization of the human nose and interaction with other microbiome members. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.GPP3-0029-2018 (2019).

  102. Nakatsuji, T. et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat. Med. 27, 700–709 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Schilling, N. A. et al. Synthetic lugdunin analogues reveal essential structural motifs for antimicrobial action and proton translocation capability. Angew. Chem. Int. Ed. Engl. 58, 9234–9238 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dhanda, G., Sarkar, P., Samaddar, S. & Haldar, J. Battle against vancomycin-resistant bacteria: recent developments in chemical strategies. J. Med. Chem. 62, 3184–3205 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Claesen, J. et al. A Cutibacterium acnes antibiotic modulates human skin microbiota composition in hair follicles. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay5445 (2020).

  107. Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aah4680 (2017).

  108. Bessesen, M. T. et al. MRSA colonization and the nasal microbiome in adults at high risk of colonization and infection. J. Infect. 71, 649–657 (2015).

    Article  PubMed  Google Scholar 

  109. Delanghe, L. et al. The role of lactobacilli in inhibiting skin pathogens. Biochem. Soc. Trans. 49, 617–627 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Lebeer, S. et al. Selective targeting of skin pathobionts and inflammation with topically applied lactobacilli. Cell Rep Med. 15, 100521 (2022).

    Article  Google Scholar 

  111. Yim, S. S. & Wang, H. H. Exploiting interbacterial antagonism for microbiome engineering. Curr. Opin. Biomed. Eng. 19, 100307 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Albright, M. B. N. et al. Solutions in microbiome engineering: prioritizing barriers to organism establishment. ISME J. 16, 331–338 (2022).

    Article  PubMed  Google Scholar 

  113. Corr, S. C. et al. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl Acad. Sci. USA 104, 7617–7621 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Leventhal, D. S. et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 11, 2739 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bloom, S. M. et al. Cysteine dependence of Lactobacillus iners is a potential therapeutic target for vaginal microbiota modulation. Nat. Microbiol. 7, 434–450 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Espah Borujeni, A., Channarasappa, A. S. & Salis, H. M. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res. 42, 2646–2659 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Patiny, L. & Borel, A. ChemCalc: a building block for tomorrow’s chemical infrastructure. J. Chem. Inf. Model. 53, 1223–1228 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Piard, J. C., Muriana, P. M., Desmazeaud, M. J. & Klaenhammer, T. R. Purification and partial characterization of Lacticin 481, a lanthionine-containing bacteriocin produced by Lactococcus lactis subsp. lactis CNRZ 481. Appl. Environ. Microbiol. 58, 279–284 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. A. Sheahan (Harvard Medical School) for help with nuclear magnetic resonance. This research was funded by a research award from Novartis Institute for BioMedical Research (Cambridge, USA), US Defense Advanced Research Projects Agency’s Living Foundries programme award HR0011-15-C-0084, and the Banting Fellowships Program (A.M.K).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z., A.M.K., P.S., J.C. and C.A.V. conceived the study and designed the experiments. Z.Z. and A.M.K. performed experiments. E.G. performed the bioinformatics. Z.Z., A.M.K. and C.A.V. wrote the manuscript.

Corresponding author

Correspondence to Christopher A. Voigt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Marnix Medema and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Network map of sequence similarities between RiPP gene clusters from human microbiome genomes.

antiSMASH 4.0 was used to identify BGCs from 2,229 HMP genome sequences. 2,248 RiPP BGCs were then clustered using BiG-SCAPE with default cutoff parameters (0.30) and visualized with Cytoscape. Nodes represent individual clusters colored by biosynthetic class. BGC nodes with similar cluster architecture are attached by edges using cutoff values as described in Methods.

Extended Data Fig. 2 Network map of sequence similarities between RiPP gene clusters selected for expression.

The networks for (a) lasso peptides and (b) lanthipeptides are shown. BGC nodes from the same network generated in Extended Data Fig. 1 were extracted to create the simplified visualization shown here. BGCs selected for gene synthesis and heterologous expression are colored with green circles.

Extended Data Fig. 3 Genome mining and reconstruction of lasso peptide gene clusters.

(a) An example of a native gene cluster. The precursor peptide is expressed, the leader cleaved (LasB), and the resulting free amine cyclized to the side chain of an Asp/Glu residue (LasC). The grey gene encodes a transporter. To build the synthetic gene cluster, each gene is codon optimized (dashed lines) and placed under the control of a synthetic ribozyme insulator, RBS, and terminator. The precursor peptide is fused to RSTC. (b) An example synthetic gene cluster is shown along with synthetic genetic parts (Supplementary Table 4). The components of the RSTN tag are shown (black, His6-tag; dark blue, SUMO; orange, thrombin protease site; white, linkers). A thrombin protease site (orange) is added before SUMO (dark blue) in the precursor peptide, and this leaves a C-terminal RVLP on the core (black circle). Dashed lines in the genome indicate the presence of other inducible systems in the E. coli Marionette X strain.

Extended Data Fig. 4 Mass spectrometry data for LANII-286.

(a) Peptide and biosynthetic gene cluster details. The genes synthesized are shown in blue and sequences are provided in Supplementary Table 3. (b) Proposed annotated structure. (c) High-res mass spectrometry traces of peptides selected for tandem MS/MS. An arrow indicates the monoisotopic mass chosen for fragmentation (m/z 1793.7391). (d) N-ethylmaleimide (NEM) labeling of peptides. Top trace, TCEP-treated peptide without the addition of NEM (black). Bottom trace, TCEP-treated peptides with the addition of NEM (purple). Each NEM adduct would lead to an increase in mass of 125.05 Da. For each peptide, the predicted masses for up to the maximum number of NEM adducts were used to generate extracted ion chromatograms. An extraction window of the mass +/- 0.25 Da was used. The grey bars correspond to the predicted masses for 1, 2,… n non-cyclized residues (no grey bars means that no adduct is detected, meaning the product is completely cyclized). (e) MS/MS spectrum of the modified peptide. The amino acid sequence of the peptide is shown with observed b and y ions mapped. The blue lines capped with a blue dot mark the labeled experimental peaks.

Extended Data Fig. 5 Mass spectrometry data for LANII-287.

(a) Peptide and biosynthetic gene cluster details. The genes synthesized are shown in blue and sequences are provided in Supplementary Table 3. (b) Proposed annotated structure. (c) High-res mass spectrometry traces of peptides selected for tandem MS/MS. An arrow indicates the monoisotopic mass chosen for fragmentation (m/z 1776.2837). (d) N-ethylmaleimide (NEM) labeling of peptides. Top trace, TCEP-treated peptide without the addition of NEM (black). Bottom trace, TCEP-treated peptides with the addition of NEM (purple). Each NEM adduct would lead to an increase in mass of 125.05 Da. For each peptide, the predicted masses for up to the maximum number of NEM adducts were used to generate extracted ion chromatograms. An extraction window of the mass +/- 0.25 Da was used. (e) MS/MS spectrum of the modified peptide. The amino acid sequence of the peptide is shown with observed b and y ions mapped. The blue lines capped with a blue dot mark the labeled experimental peaks.

Extended Data Fig. 6 Mass spectrometry data for LANII-916.

(a) Peptide and biosynthetic gene cluster details. The genes synthesized are shown in blue and sequences are provided in Supplementary Table 3. (b) Proposed annotated structure. (c) High-res mass spectrometry traces of peptides selected for tandem MS/MS. An arrow indicates the monoisotopic mass chosen for fragmentation (m/z 1163.8450). (d) N-ethylmaleimide (NEM) labeling of peptides. Top trace, TCEP-treated peptide without the addition of NEM (black). Bottom trace, TCEP-treated peptides with the addition of NEM (purple). Each NEM adduct would lead to an increase in mass of 125.05 Da. For each peptide, the predicted masses for up to the maximum number of NEM adducts were used to generate extracted ion chromatograms. An extraction window of the mass +/- 0.25 Da was used. The grey bars correspond to the predicted masses for 1, 2,… n non-cyclized residues (no grey bars means that no adduct is detected, meaning the product is completely cyclized). (e) MS/MS spectrum of the modified peptide. The amino acid sequence of the peptide is shown with observed b and y ions mapped. The blue lines capped with a blue dot mark the labeled experimental peaks.

Extended Data Fig. 7 Mass spectrometry data for LANII-417.

(a) Peptide and biosynthetic gene cluster details. The genes synthesized are shown in blue and sequences are provided in Supplementary Table 3. (b) Proposed annotated structure. (c) High-res mass spectrometry traces of peptides selected for tandem MS/MS. An arrow indicates the monoisotopic mass chosen for fragmentation (m/z 1381.5389). (d) N-ethylmaleimide (NEM) labeling of peptides. Top trace, TCEP-treated peptide without the addition of NEM (black). Bottom trace, TCEP-treated peptides with the addition of NEM (purple). Each NEM adduct would lead to an increase in mass of 125.05 Da. For each peptide, the predicted masses for up to the maximum number of NEM adducts were used to generate extracted ion chromatograms. An extraction window of the mass +/- 0.25 Da was used. (e) MS/MS spectrum of the modified peptide. The amino acid sequence of the peptide is shown with observed b and y ions mapped. The blue lines capped with a blue dot mark the labeled experimental peaks.

Extended Data Fig. 8 Mass spectrometry data for LANII-687.

(a) Peptide and biosynthetic gene cluster details. The genes synthesized are shown in blue and sequences are provided in Supplementary Table 3. (b) Proposed annotated structure. (c) High-res mass spectrometry traces of peptides selected for tandem MS/MS. An arrow indicates the monoisotopic mass chosen for fragmentation (m/z 1619.2318). (d) N-ethylmaleimide (NEM) labeling of peptides. Top trace, TCEP-treated peptide without the addition of NEM (black). Bottom trace, TCEP-treated peptides with the addition of NEM (purple). Each NEM adduct would lead to an increase in mass of 125.05 Da. For each peptide, the predicted masses for up to the maximum number of NEM adducts were used to generate extracted ion chromatograms. An extraction window of the mass +/- 0.25 Da was used. The grey bars correspond to the predicted masses for 1, 2,… n non-cyclized residues (no grey bars means that no adduct is detected, meaning the product is completely cyclized). (e) MS/MS spectrum of the modified peptide. The amino acid sequence of the peptide is shown with observed b and y ions mapped. The blue lines capped with a blue dot mark the labeled experimental peaks.

Extended Data Fig. 9 Mass spectrometry data for LANII-691.

(a) Peptide and biosynthetic gene cluster details. The genes synthesized are shown in blue and sequences are provided in Supplementary Table 3. (b) Proposed annotated structure. (c) High-res mass spectrometry traces of peptides selected for tandem MS/MS. An arrow indicates the monoisotopic mass chosen for fragmentation (m/z 1426.6661). (d) N-ethylmaleimide (NEM) labeling of peptides. Top trace, TCEP-treated peptide without the addition of NEM (black). Bottom trace, TCEP-treated peptides with the addition of NEM (purple). Each NEM adduct would lead to an increase in mass of 125.05 Da. (e) MS/MS spectrum of the modified peptide. The amino acid sequence of the peptide is shown with observed b and y ions mapped. The blue lines capped with a blue dot mark the labeled experimental peaks.

Extended Data Fig. 10 MIC assay for RiPPs against human pathogens and commensals.

The antimicrobial activity of (a) LANII-286, (b) LANII-287, (c) LANII-417, (d) LANII-687, (e) LANII-691 and (f) LANII-916 were tested against human pathogens (Methods). The data points show three replicates performed on different days and the lines show the means of these data. The % Growth was calculated for each day and then these values were averaged.

Supplementary information

Supplementary Information

Supplementary Text, Figs. 1–20, Tables 1–5 and references.

Reporting Summary

Source data

Source Data Fig. 2

Antismash files for RiPP gene clusters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, A.M., Zhang, Z., Glassey, E. et al. Systematic mining of the human microbiome identifies antimicrobial peptides with diverse activity spectra. Nat Microbiol 8, 2420–2434 (2023). https://doi.org/10.1038/s41564-023-01524-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01524-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing