Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Metabolic exchanges are ubiquitous in natural microbial communities

Abstract

Microbial communities drive global biogeochemical cycles and shape the health of plants and animals—including humans. Their structure and function are determined by ecological and environmental interactions that govern the assembly, stability and evolution of microbial communities. A widely held view is that antagonistic interactions such as competition predominate in microbial communities and are ecologically more important than synergistic interactions—for example, mutualism or commensalism. Over the past decade, however, a more nuanced picture has emerged, wherein bacteria, archaea and fungi exist within interactive networks in which they exchange essential and non-essential metabolites. These metabolic interactions profoundly impact not only the physiology, ecology and evolution of the strains involved, but are also central to the functioning of many, if not all, microbiomes. Therefore, we advocate for a balanced view of microbiome ecology that encompasses both synergistic and antagonistic interactions as key forces driving the structure and dynamics within microbial communities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Obligate metabolic interactions are frequently synergistic.
Fig. 2: Metabolic auxotrophies are common in natural microbial communities.
Fig. 3: Evolution of obligate metabolic interactions within microbial communities.
Fig. 4: Synergistic interactions are more context-dependent than antagonistic interactions.

Similar content being viewed by others

Data availability

All data are derived from published sources (see Supplementary Tables 1 and 5 for an overview). The raw data used to generate Figs. 1, 2 and 4 are provided in the Supplementary tables that are mentioned in the figure legends. The raw data that were used to calculate the values shown in Fig. 4 are provided at https://zenodo.org/badge/latestdoi/652204203.

Code availability

The code that was used to calculate the values shown in Fig. 4 is provided at https://zenodo.org/badge/latestdoi/652204203.

References

  1. Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Schloss, P. et al. Status of the archaeal and bacterial census: an update. mBio 7, e00201–e00216 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Oña, L. et al. Obligate cross-feeding expands the metabolic niche of bacteria. Nat. Ecol. Evol. 5, 1224–1232 (2020).

    Article  Google Scholar 

  6. Riley, M. A. in Prokaryotic Antimicrobial Peptides: from Genes to Applications (eds Drider, D. & Rebuffat, S.) 13–26 (Springer, 2011).

  7. Coulthurst, S. The Type VI secretion system: a versatile bacterial weapon. Microbiology 165, 503–515 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Rosenzweig, R. F., Sharp, R. R., Treves, D. S. & Adams, J. Microbial evolution in a simple unstructured environment - genetic differentiation in Escherichia coli. Genetics 137, 903–917 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pauli, B., Ajmera, S. & Kost, C. Determinants of synergistic cell-cell interactions in bacteria. Biol. Chem. 404, 521–534 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Giovannoni, S. J. Vitamins in the sea. Proc. Natl Acad. Sci. USA 109, 13888–13889 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).

    Article  PubMed  Google Scholar 

  13. Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, S. et al. Heme auxotrophy in abundant aquatic microbial lineages. Proc. Natl Acad. Sci. USA 118, e2102750118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Palmer, J. D. & Foster, K. R. Bacterial species rarely work together. Science 376, 581–582 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Ortiz, A., Vega, N. M., Ratzke, C. & Gore, J. Interspecies bacterial competition regulates community assembly in the C. elegans intestine. ISME J. 15, 2131–2145 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol. 24, 833–845 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl Acad. Sci. USA 111, E2149–E2156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D’Souza, G. et al. Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution 68, 2559–2570 (2014).

    Article  PubMed  Google Scholar 

  23. Embree, M., Liu, J. K., Al-Bassam, M. M. & Zengler, K. Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc. Natl Acad. Sci. USA 112, 15450–15455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, J. S. L. et al. Microbial communities form rich extracellular metabolomes that foster metabolic interactions and promote drug tolerance. Nat. Microbiol. 7, 542–555 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hessler, T. et al. Vitamin interdependencies predicted by metagenomics-informed network analyses validated in microbial community microcosms. Nat. Commun. 14, 4768 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lochhead, A. G. & Burton, M. O. Qualitative studies of soil microorganisms .14. Specific vitamin requirements of the predominant bacterial flora. Can. J. Microbiol. 3, 35–42 (1957).

    Article  CAS  PubMed  Google Scholar 

  27. Zatsarinnaya, E. A., Kalchugina, V. D. & Kolupaeva, N. V. Occurrence of auxotrophic variants among bacteria of Enterobacteriaceae family isolated from water objects of the north-west of the Murmansk region. IOP Conf. Ser. Earth Environ. Sci. 263, 012036 (2019).

    Article  Google Scholar 

  28. Ryback, B., Bortfeld-Miller, M. & Vorholt, J. A. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria. ISME J. 16, 2712–2724 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Figueroa-Gonzalez, P. A. et al. Saccharibacteria as organic carbon sinks in hydrocarbon-fueled communities. Front. Microbiol. 11, 587782 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hubalek, V. et al. Vitamin and amino acid auxotrophy in anaerobic consortia operating under methanogenic conditions. mSystems 2, e00038-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rodríguez-Gijón, A. et al. A genomic perspective across Earth’s microbiomes reveals that genome size in Archaea and Bacteria is linked to ecosystem type and trophic strategy. Front. Microbiol. 12, 761869 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moura, A., Savageau, M. A. & Alves, R. Relative amino acid composition signatures of organisms and environments. PLoS ONE 8, e77319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nagata, T. in Microbial Ecology of the Oceans 2nd edn (ed. Kirchman D. L.) 207–241 (Wiley, 2008).

  35. Canon, F. et al. Understanding the mechanisms of positive microbial interactions that benefit lactic acid bacteria co-cultures. Front. Microbiol. 11, 2088 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Durham, B. P. et al. Recognition cascade and metabolite transfer in a marine bacteria-phytoplankton model system. Environ. Microbiol. 19, 3500–3513 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl Acad. Sci. USA 116, 15979 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burke, C. et al. Bacterial community assembly based on functional genes rather than species. Proc. Natl Acad. Sci. USA 108, 14288–14293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tecon, R. & Or, D. Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces. Sci. Rep. 7, 43726 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weiss, A. S. et al. In vitro interaction network of a synthetic gut bacterial community. ISME J. 16, 1095–1109 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Giri, S. et al. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr. Biol. 31, 5547–5557 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Giri, S. et al. Prevalent emergence of reciprocity among cross-feeding bacteria. ISME Commun. 2, 71 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Paczia, N. et al. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb. Cell. Fact. 11, 122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Campbell, K. et al. Self-establishing communities enable cooperative metabolite exchange in a eukaryote. eLife 4, e09943 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kamrad, S. et al. Metabolic heterogeneity and cross-feeding within isogenic yeast populations captured by DILAC. Nat. Microbiol. 8, 441–454 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zamenhof, S. & Eichhorn, H. H. Study of microbial evolution through loss of biosynthetic functions—establishment of defective mutants. Nature 216, 456–458 (1967).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, W. & Levy, S. B. Increased fitness of Pseudomonas fluorescens pf01 leucine auxotrophs in soil. Appl. Environ. Microbiol. 74, 3644–3651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alam, M. T. et al. The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nat. Commun. 8, 16018 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. D’Souza, G. & Kost, C. Experimental evolution of metabolic dependency in bacteria. PLoS Genet. 12, e1006364 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Boles, B. R., Thoendel, M. & Singh, P. K. Self-generated diversity produces ‘insurance effects’ in biofilm communities. Proc. Natl Acad. Sci. USA 101, 16630–16635 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Correia-Melo, C. et al. Cell-cell metabolite exchange creates a pro-survival metabolic environment that extends lifespan. Cell 186, 63–79 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 8, 953–962 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Preussger, D. et al. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr. Biol. 30, 3580–3590 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Konstantinidis, D. et al. Adaptive laboratory evolution of microbial co-cultures for improved metabolite secretion. Mol. Syst. Biol. 17, e10189 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Harcombe, W. R. et al. Evolution of bidirectional costly mutualism from byproduct consumption. Proc. Natl Acad. Sci. USA 115, 12000–12004 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dal Co, A. et al. Short-range interactions govern the dynamics and functions of microbial communities. Nat. Ecol. Evol. 4, 366–375 (2020).

    Article  PubMed  Google Scholar 

  61. Lewis, W. H. et al. Innovations to culturing the uncultured microbial majority. Nat. Rev. Microbiol. 19, 225–240 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Vartoukian, S. R., Palmer, R. M. & Wade, W. G. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol. Lett. 309, 1–7 (2010).

    CAS  PubMed  Google Scholar 

  63. Pande, S. & Kost, C. Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 25, 349–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hernandez-Valdes, J. A., van Gestel, J. & Kuipers, O. P. A riboswitch gives rise to multi-generational phenotypic heterogeneity in an auxotrophic bacterium. Nat. Commun. 11, 1203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bapteste, E. & Brochier, C. On the conceptual difficulties in rooting the tree of life. Trends Microbiol. 12, 9–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Aulakh, S. K. et al. Spontaneously established syntrophic yeast communities improve bioproduction. Nat. Chem. Biol. 19, 951–961 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hoek, T. A. et al. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 14, e1002540 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Klitgord, N. & Segre, D. Environments that induce synthetic microbial ecosystems. PLoS Comput. Biol. 6, e1001002 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pacheco, A. R., Moel, M. & Segrè, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Morris, B. E., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Rivett, D. W. et al. Resource-dependent attenuation of species interactions during bacterial succession. ISME J. 10, 2259–2268 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Olin-Sandoval, V. et al. Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism. Nature 572, 249–253 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Garcia, S. L. et al. Auxotrophy and intrapopulation complementary in the ‘interactome’ of a cultivated freshwater model community. Mol. Ecol. 24, 4449–4459 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Cordero, O. X. & Datta, M. S. Microbial interactions and community assembly at microscales. Curr. Opin. Microbiol. 31, 227–234 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Berdy, B., Spoering, A. L., Ling, L. L. & Epstein, S. S. In situ cultivation of previously uncultivable microorganisms using the ichip. Nat. Protoc. 12, 2232–2242 (2017).

    Article  PubMed  Google Scholar 

  77. Gabrielli, N. et al. Unravelling metabolic cross-feeding in a yeast–bacteria community using 13C-based proteomics. Mol. Syst. Biol. 19, e11501 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).

Download references

Acknowledgements

We thank the entire Kost laboratory for helpful discussions, as well as F. Zorrilla, S. Giri and L. Oña for sharing data and helping with preparing graphs. C.K. is funded by the German Research Foundation (DFG: SFB 944, P19, KO 3909/2-1, KO 3909/4-1, KO 3909/6-1, KO 3909/9-1) and the Volkswagen Foundation (Az: 9B831). K.R.P. acknowledges support from the UK Medical Research Council (project no. MC_UU_00025/11) and European Research Council (ERC; grant agreement no. 866028). Work on microbial metabolic interactions in the Ralser laboratory is funded by the ERC under grant agreement no. ERC-SyG-2020 951475, the Wellcome Trust (IA 200829/Z/16/Z), as well as the Oxford–Berlin Centre for Advanced studies. S.L.G. is funded by SciLifeLab and the Swedish Research Council VR (grant no. 2022-03077). J.F. acknowledges support from the Israel Science Foundation (grants nos. 883/22 and 3395/20) and the Volkswagen Foundation (Az: 9B831).

Author information

Authors and Affiliations

Authors

Contributions

C.K. performed the literature search with inputs from all authors. C.K. and J.F. analysed the data. C.K., K.R.P., J.F., S.L.G. and M.R. contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Christian Kost, Kiran Raosaheb Patil, Jonathan Friedman, Sarahi L. Garcia or Markus Ralser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Thomas Bell, Megan Frederickson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables

Supplementary Table 1 References and numerical data for Fig. 1b,c. Supplementary Table 2 Source data for Fig. 1b. Supplementary Table 3 Source data for Fig. 1c: co-cultures of kefir-derived strains in milk. Supplementary Table 4 Source data for Fig. 1c: co-cultures of kefir-derived strains on milk agar plates. Supplementary Table 5 References and Supplementary Information for Fig. 2. Besides the references, numerical data and sample size, the type of bacteria, type of auxotrophy, method to detect auxotrophic genotypes and criteria used to call a genotype auxotrophic are indicated. Supplementary Table 6 Source data for Fig. 4a,b. Supplementary Table 7 Source data for Fig. 4c,d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kost, C., Patil, K.R., Friedman, J. et al. Metabolic exchanges are ubiquitous in natural microbial communities. Nat Microbiol 8, 2244–2252 (2023). https://doi.org/10.1038/s41564-023-01511-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01511-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing