Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

SARS-CoV-2 evolution in the Omicron era

Abstract

Since SARS-CoV-2 BA.5 (Omicron) emerged and spread in 2022, Omicron lineages have markedly diversified. Here we review the evolutionary trajectories and processes that underpin the emergence of these lineages, and identify the most prevalent sublineages. We discuss the potential origins of second-generation BA.2 lineages. Simple and complex recombination, antigenic drift and convergent evolution have enabled SARS-CoV-2 to accumulate mutations that alter its antigenicity. We also discuss the potential evolutionary trajectories of SARS-CoV-2 in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogenetic relatedness and convergent evolution in contemporary (as of July 2023) Omicron descendent lineages.
Fig. 2: Relative growth rates and variant proportions as of 22 May 2023.
Fig. 3: Genome schematics of the contemporary recombinant lineages.

Similar content being viewed by others

References

  1. Carabelli, A. M. et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat. Rev. Microbiol. 21, 162–177 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Markov, P. V. et al. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 21, 361–379 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Schmidt, F. et al. High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. Nature 600, 512–516 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Greaney, A. J. et al. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 29, 463–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martin, D. P. et al. The emergence and ongoing convergent evolution of the SARS-CoV-2 N501Y lineages. Cell 184, 5189–5200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature 614, 521–529 (2023).

    CAS  PubMed  Google Scholar 

  8. Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zahradník, J. et al. SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nat. Microbiol. 6, 1188–1198 (2021).

    Article  PubMed  Google Scholar 

  10. Viana, R. et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 603, 679–686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tegally, H. et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592, 438–443 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372, 815–821 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rambaut, A. et al. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. virological.org https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563 (2020).

  14. Hill, V. et al. The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK. Virus Evol. 8, veac080 (2022).

  15. Ruis, C. et al. Preadaptation of pandemic GII.4 noroviruses in unsampled virus reservoirs years before emergence. Virus Evol. 6, veaa067 (2020).

  16. Kemp, S. A. et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 592, 277–282 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  17. Wilkinson, S. A. J. et al. Recurrent SARS-CoV-2 mutations in immunodeficient patients. Virus Evol. 8, veac050 (2022).

  18. Harari, S. et al. Drivers of adaptive evolution during chronic SARS-CoV-2 infections. Nat. Med. 28, 1501–1508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mallapaty, S. Where did Omicron come from? Three key theories. Nature 602, 26–28 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Tegally, H. et al. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat. Med. 28, 1785–1790 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karyakarte, R. P. et al. An early and preliminary assessment of the clinical severity of the emerging SARS-CoV-2 Omicron variants in Maharashtra, India. Cureus 14, e31352 (2022).

    PubMed  PubMed Central  Google Scholar 

  22. Regarding Mutant Strains of the New Coronavirus (SARS-CoV-2), which are Concerned about Increased Infection and Transmissibility and Changes in Antigenicity (20th Report) (Japanese National Institute of infectious Diseases (NIID), 2022); https://www.niid.go.jp/niid/ja/2019-ncov/2551-cepr/11469-sars-cov-2-20.html

  23. Hisner, R. 2nd-Generation BA.2 saltation lineage, >30 spike mutations (3 seq, 2 countries, Aug 14) #2183. GitHub https://github.com/cov-lineages/pango-designation/issues/2183 (2023).

  24. Dijokaite-Guraliuc, A. et al. Rapid escape of new SARS-CoV-2 Omicron variants from BA.2-directed antibody responses. Cell Rep. 42, 112271 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. SARS-CoV-2 Variants of Concern and Variants under Investigation in England Technical Briefing 49 (UK Health Security Agency, 2023).

  26. Jackson, B. et al. Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic. Cell 184, 5179–5188 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gutierrez, B. et al. Emergence and widespread circulation of a recombinant SARS-CoV-2 lineage in North America. Cell Host Microbe 30, 1112–1123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Simon-Loriere, E. et al. Rapid characterization of a Delta-Omicron SARS-CoV-2 recombinant detected in Europe. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-1502293/v1 (2022).

  29. Pybus, O. Pango lineage Nomenclature: provisional rules for naming recombinant lineages. virological.org https://virological.org/t/pango-lineage-nomenclature-provisional-rules-for-naming-recombinant-lineages/657 (2021).

  30. Sheward, D. J. et al. Omicron sublineage BA.2.75.2 exhibits extensive escape from neutralising antibodies. Lancet Infect. Dis. 22, 1538–1540 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Akerman, A. et al. Emergence and antibody evasion of BQ, BA.2.75 and SARS-CoV-2 recombinant sub-lineages in the face of maturing antibody breadth at the population level. eBioMedicine 90, 104545 (2023).

  32. Silcn. XBB.1*/BA.2.75*/XBB.1* recombinant with S:F486P (8 seq, Malaysia) #1532. GitHub https://github.com/cov-lineages/pango-designation/issues/1532 (2023).

  33. SARS-CoV 2 Sequencing Update 15 July 2022 (Network for Genomic Surveillance in South Africa, 2022).

  34. Pangilinan, E. A. R. et al. Analysis of SARS-CoV-2 recombinant lineages XBC and XBC.1 in the Philippines and evidence for Delta-Omicron co-infection as a potential origin. Preprint at bioRxiv https://doi.org/10.1101/2023.04.12.534029 (2023).

  35. Chaguza, C. et al. Accelerated SARS-CoV-2 intrahost evolution leading to distinct genotypes during chronic infection. Preprint at medRxiv https://doi.org/10.1101/2022.06.29.22276868 (2022).

  36. Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Eguia, R. T. et al. A human coronavirus evolves antigenically to escape antibody immunity. PLoS Pathog. 17, e1009453 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moulana, A. et al. Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1. Nat. Commun. 13, 7011 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yue, C. et al. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. Lancet Infect. Dis. 23, 278–280 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Focosi, D., Quiroga, R., McConnell, S., Johnson, M. C. & Casadevall, A. Convergent evolution in SARS-CoV-2 spike creates a variant soup from which new COVID-19 waves emerge. Int. J. Mol. Sci. 24, 2264 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Starr, T. N. et al. Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains. PLoS Pathog. 18, e1010951 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cox, M. et al. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies. Nat. Rev. Microbiol. 21, 112–124 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. McCallum, M. et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184, 2332–2347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gerdol, M., Dishnica, K. & Giorgetti, A. Emergence of a recurrent insertion in the N-terminal domain of the SARS-CoV-2 spike glycoprotein. Virus Res. 310, 198674 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Greco, S. & Gerdol, M. Independent acquisition of short insertions at the RIR1 site in the spike N-terminal domain of the SARS-CoV-2 BA.2 lineage. Transbound. Emerg. Dis. 69, e3408–e3415 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Yisimayi, A. et al. Repeated Omicron infection alleviates SARS-CoV-2 immune imprinting. Preprint at bioRxiv https://doi.org/10.1101/2023.05.01.538516 (2023).

  48. Koelle, K., Cobey, S., Grenfell, B. & Pascual, M. Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science 314, 1898–1903 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682–687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, Y. et al. A large-scale systematic survey reveals recurring molecular features of public antibody responses to SARS-CoV-2. Immunity 55, 1105–1117 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Twohig, K. A. et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect. Dis. 22, 35–42 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harari, S., Miller, D., Fleishon, S., Burstein, D. & Stern, A. Using big sequencing data to identify chronic SARS-coronavirus-2 infections. Preprint at bioRxiv https://doi.org/10.1101/2023.07.16.549184 (2023).

  53. Domańska-Blicharz, K. et al. Cryptic SARS-CoV-2 lineage identified on two mink farms as a possible result of long-term undetected circulation in an unknown animal reservoir, Poland, November 2022 to January 2023. Eurosurveillance 28, 2300188 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pickering, B. et al. Divergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmission. Nat. Microbiol. 7, 2011–2024 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brito, A. F. et al. Global disparities in SARS-CoV-2 genomic surveillance. Nat. Commun. 13, 7003 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shu, Y. & McCauley, J. GISAID: global initiative on sharing all influenza data—from vision to reality. Eurosurveillance 22, 30494 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Murrell, B. SARS-CoV-2 lineage competition. GitHub https://github.com/MurrellGroup/lineages (2023).

  58. Lacek, K. A. et al. SARS-CoV-2 Delta-Omicron recombinant viruses, United States. Emerg. Infect. Dis. 28, 1442–1445 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge all data contributors—the authors, their originating laboratories that were responsible for obtaining the specimens, and their submitting laboratories for generating the genetic sequences and metadata and sharing through the GISAID initiative56, on which this research is based. The growth competition analysis from https://github.com/MurrellGroup/lineages (ref. 57) was performed on all available GISAID sequences, downloaded as a package on 22 May 2023. We thank the Pango lineage designation committee and wider contributors for identifying and naming lineages; the teams behind Pangolin, Nextstrain, covSPECTRUM and UShER (particularly A. Hinrichs) for developing tools that are used to identify and survey lineages; and S. Fleishon for his valuable feedback and discussions. T.P.P. is funded by the MRC-funded G2P-UK National Virology Consortium (MR/W005611/1); O.G.P. and C. Ruis are supported by the Oxford Martin School; O.G.P. acknowledges assistance from S. Attwood, funded by the Horizon Europe Research and Innovation programme under grant agreement no. 871075 (ELIXIR-CONVERGE); and D.J.S., K.S. and B.M. were supported by funding from SciLifeLab’s Pandemic Laboratory Preparedness programme (VC-2022-0028 and VC-2021-0033) and from the Erling Persson Foundation (ID: 2021 0125).

Author information

Authors and Affiliations

Authors

Contributions

C. Roemer, D.J.S., R.H., F.G., H.S., N.F., J.S., B.M. and T.P.P. researched data. C. Roemer, D.J.S., R.H., F.G., H.S., N.F., J.S., A.O., A.R., O.G.P. and C. Ruis substantially contributed to discussion of content. K.S., B.M. and T.P.P. performed updated analyses. D.J.S. and T.P.P. wrote the first draft. All authors reviewed and edited the paper before submission.

Corresponding author

Correspondence to Thomas P. Peacock.

Ethics declarations

Competing interests

A.O., A.R. and O.G.P. have undertaken consulting for AstraZeneca AB relating to the genetic diversity and classification of SARS-COV-2 lineages. D.J.S. also consults for AstraZeneca AB on matters related to monoclonal antibody therapeutics for COVID-19. At the time of final submission of this manuscript, F.G. was a contractor for Invivyd, a company that develops monoclonal antibodies to treat COVID-19. The other authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Rowena Bull, Frank Kirchhoff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roemer, C., Sheward, D.J., Hisner, R. et al. SARS-CoV-2 evolution in the Omicron era. Nat Microbiol 8, 1952–1959 (2023). https://doi.org/10.1038/s41564-023-01504-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01504-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing