Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A predicted CRISPR-mediated symbiosis between uncultivated archaea

Abstract

CRISPR–Cas systems defend prokaryotic cells from invasive DNA of viruses, plasmids and other mobile genetic elements. Here, we show using metagenomics, metatranscriptomics and single-cell genomics that CRISPR systems of widespread, uncultivated archaea can also target chromosomal DNA of archaeal episymbionts of the DPANN superphylum. Using meta-omics datasets from Crystal Geyser and Horonobe Underground Research Laboratory, we find that CRISPR spacers of the hosts Candidatus Altiarchaeum crystalense and Ca. A. horonobense, respectively, match putative essential genes in their episymbionts’ genomes of the genus Ca. Huberiarchaeum and that some of these spacers are expressed in situ. Metabolic interaction modelling also reveals complementation between host–episymbiont systems, on the basis of which we propose that episymbionts are either parasitic or mutualistic depending on the genotype of the host. By expanding our analysis to 7,012 archaeal genomes, we suggest that CRISPR–Cas targeting of genomes associated with symbiotic archaea evolved independently in various archaeal lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogenetic positioning of Ca. Altiarchaea and Ca. Huberarchaea, sampling locations, FISH analysis and CRISPR–Cas targets.
Fig. 2: Example of Ca. Altiarchaea CRISPR–Cas type I-B loci, gene targets on host and episymbionts’ genomes and metabolic interactions between Ca. Altiarchaea and Ca. Huberiarchaea as inferred from genome-scaled metabolic modelling.
Fig. 3: Illustration of the newly proposed functionality of CRISPR–Cas systems within Ca. Altiarchaea.
Fig. 4: Directed spacer interaction of DPANN archaea derived from the analysis of 7,012 publicly available archaeal genomes.

Similar content being viewed by others

Data availability

Metagenomic datasets generated from the CG20,27 ecosystem in 2009, 2014 and 2015 (n = 66) and the HURL24 environment (n = 2) were downloaded from the NCBI SRA in April 2019 (Supplementary Table 1). SAGs generated in a previous study20 (n = 219) were retrieved from the Joint Genome Institute’s Integrated Microbial Genomes and Microbiomes database111 (Supplementary Table 3). The metagenome-derived genomes of Ca. A. crystalense and Ca. H. crystalense from CG are publicly accessible from NCBI (accession numbers in Supplementary Table 2). The genomes of Ca. A. horonobense and Ca. H. julieae from HURL were newly reconstructed in this investigation (Supplementary Table 2). All previously unpublished genomes used in this study are available in figshare https://doi.org/10.6084/m9.figshare.22339555(ref. 112) and all viral genomes are available at https://doi.org/10.6084/m9.figshare.22738568(ref. 113). All raw FISH images are deposited here: https://doi.org/10.6084/m9.figshare.22739849(ref. 114).

Code availability

The code used in this publication is based on previously published code. Please refer to the Methods for information regarding the software and versions used.

References

  1. Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67 (2010).

    CAS  PubMed  Google Scholar 

  2. Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008).

    CAS  PubMed  Google Scholar 

  3. Koonin, E. V. & Makarova, K. S. Evolutionary plasticity and functional versatility of CRISPR systems. PLoS Biol. 20, e3001481 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Makarova, K. S. et al. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13, 722 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    CAS  PubMed  Google Scholar 

  6. Maniv, I., Jiang, W., Bikard, D. & Marraffini, L. A. Impact of different target sequences on type III CRISPR–Cas immunity. J. Bacteriol. 198, 941 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568–571 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dombrowski, N., Lee, J.-H., Williams, T. A., Offre, P. & Spang, A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol. Lett. 366, fnz008 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    CAS  PubMed  Google Scholar 

  10. Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).

    CAS  PubMed  Google Scholar 

  11. Sakai, H. D. et al. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses. Proc. Natl Acad. Sci. USA 119, e2115449119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jahn, U. et al. Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two archaea. J. Bacteriol. 190, 1743–1750 (2008).

    CAS  PubMed  Google Scholar 

  13. Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002).

    CAS  PubMed  Google Scholar 

  14. Schwank, K. et al. An archaeal symbiont–host association from the deep terrestrial subsurface. ISME J. 13, 2135–2139 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc. Natl Acad. Sci. USA 116, 14661 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Munson-McGee, J. H. et al. Nanoarchaeota, their Sulfolobales host, and Nanoarchaeota virus distribution across Yellowstone National Park hot springs. Appl. Environ. Microbiol. 81, 7860–7868 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jarett, J. K. et al. Single-cell genomics of co-sorted Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis. Microbiome 6, 161 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. Wurch, L. et al. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat. Commun. 7, 12115 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hamm, J. N. et al. The parasitic lifestyle of an archaeal symbiont. Preprint at bioarXiv https://doi.org/10.1101/2023.02.24.5298342.24.529834v2 (2023).

  20. Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Heimerl, T. et al. A complex endomembrane system in the archaeon Ignicoccus hospitalis tapped by Nanoarchaeum equitans. Front. Microbiol. 8, 1072 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Comolli, L. R. & Banfield, J. F. Inter-species interconnections in acid mine drainage microbial communities. Front. Microbiol. 5, 367 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Baker, B. J. et al. Enigmatic, ultrasmall, uncultivated Archaea. Proc. Natl Acad. Sci. USA 107, 8806–8811 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hernsdorf, A. W. et al. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J. 11, 1915–1929 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Probst, A. J. et al. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat. Commun. 5, 5497 (2014).

    CAS  PubMed  Google Scholar 

  26. Probst, A. J. et al. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations. Environ. Microbiol. 19, 459–474 (2017).

    CAS  PubMed  Google Scholar 

  27. Emerson, J. B., Thomas, B. C., Alvarez, W. & Banfield, J. F. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. Environ. Microbiol. 18, 1686–1703 (2016).

    CAS  PubMed  Google Scholar 

  28. Rahlff, J. et al. Lytic archaeal viruses infect abundant primary producers in Earth’s crust. Nat. Commun. 12, 4642 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wimmer, F., Mougiakos, I., Englert, F. & Beisel, C. L. Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons. Mol. Cell 82, 1210–1224.e6 (2022).

    CAS  PubMed  Google Scholar 

  30. Marshall, R. et al. Rapid and scalable characterization of CRISPR technologies using an E. coli cell-free transcription-translation system. Mol. Cell 69, 146–157.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Heussler, G. E. & O’Toole, G. A. Friendly fire: biological functions and consequences of chromosomal targeting by CRISPR–Cas systems. J. Bacteriol. 198, 1481–1486 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stern, A., Keren, L., Wurtzel, O., Amitai, G. & Sorek, R. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 26, 335–340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Aklujkar, M. & Lovley, D. R. Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus. BMC Evol. Biol. 10, 230 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Bhaya, D., Davison, M. & Barrangou, R. CRISPR–Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 45, 273–297 (2011).

    CAS  PubMed  Google Scholar 

  35. Wilson, G. G. Organization of restriction-modification systems. Nucleic Acids Res. 19, 2539–2566 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bornemann, T. L. V. et al. Genetic diversity in terrestrial subsurface ecosystems impacted by geological degassing. Nat. Commun. 13, 284 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Turgeman-Grott, I. et al. Pervasive acquisition of CRISPR memory driven by inter-species mating of archaea can limit gene transfer and influence speciation. Nat. Microbiol. 4, 177–186 (2019).

    CAS  PubMed  Google Scholar 

  38. Stachler, A.-E. et al. High tolerance to self-targeting of the genome by the endogenous CRISPR–Cas system in an archaeon. Nucleic Acids Res. 45, 5208–5216 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Vink, J. N. A., Baijens, J. H. L. & Brouns, S. J. J. PAM-repeat associations and spacer selection preferences in single and co-occurring CRISPR–Cas systems. Genome Biol. 22, 281 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pyenson, N. C., Gayvert, K., Varble, A., Elemento, O. & Marraffini, L. A. Broad targeting specificity during bacterial type III CRISPR–Cas immunity constrains viral escape. Cell Host Microbe 22, 343–353 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chabas, H., Müller, V., Bonhoeffer, S. & Regoes, R. R. Epidemiological and evolutionary consequences of different types of CRISPR-Cas systems. PLoS Comput. Biol. 18, e1010329 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Brodt, A., Lurie-Weinberger, M. N. & Gophna, U. CRISPR loci reveal networks of gene exchange in archaea. Biol. Direct 6, 65 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Paper, W. et al. Ignicoccus hospitalis sp. nov., the host of ‘Nanoarchaeum equitans’. Int. J. Syst. Evol. Microbiol. 57, 803–808 (2007).

    CAS  PubMed  Google Scholar 

  44. Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Hohenester, E. & Yurchenco, P. D. Laminins in basement membrane assembly. Cell Adhes. Migr. 7, 56–63 (2013).

    Google Scholar 

  46. Hohenester, E. Laminin G-like domains: dystroglycan-specific lectins. Curr. Opin. Struct. Biol. 56, 56–63 (2019).

    CAS  PubMed  Google Scholar 

  47. Benner, S. A., Ellington, A. D. & Tauer, A. Modern metabolism as a palimpsest of the RNA world. Proc. Natl Acad. Sci. USA 86, 7054–7058 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Joshi, N. A. & Fass, J. N. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (v.1.33) Github https://github.com/najoshi/sickle (2011).

  49. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bornemann, T. L. V., Esser, S. P., Stach, T. L., Burg, T. & Probst, A. J. uBin—a manual refining tool for genomes from metagenomes. Environ. Microbiol. 25, 1077–1083 (2023).

  52. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Darling, A. E. et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2, e243 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, H.-C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235 (2017).

    Google Scholar 

  60. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2017).

    PubMed Central  Google Scholar 

  61. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  PubMed  Google Scholar 

  62. Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C. & Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 60, 685–699 (2011).

    PubMed  PubMed Central  Google Scholar 

  63. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59 (2014).

    PubMed  Google Scholar 

  65. Gouy, M., Tannier, E., Comte, N. & Parsons, D. P. in Multiple Sequence Alignment: Methods and Protocols (ed. Katoh, K.) 241–260 (Springer, 2021).

  66. Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Moller, A. G. & Liang, C. MetaCRAST: reference-guided extraction of CRISPR spacers from unassembled metagenomes. PeerJ 5, e3788 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Biswas, A., Fineran, P. C. & Brown, C. M. Accurate computational prediction of the transcribed strand of CRISPR non-coding RNAs. Bioinformatics 30, 1805–1813 (2014).

    CAS  PubMed  Google Scholar 

  70. Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Xie, Z. & Tang, H. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 33, 3340–3347 (2017).

    CAS  PubMed  Google Scholar 

  72. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  PubMed  Google Scholar 

  73. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

  74. Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).

    CAS  PubMed  Google Scholar 

  75. Cook, R. et al. INfrastructure for a PHAge REference. Database: identification of large-scale biases in the current collection of cultured phage genomes. Phage 2, 214–223 (2021).

  76. Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect archaea and bacteria. PeerJ 5, e3243 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Google Scholar 

  78. Meier-Kolthoff, J. P. & Göker, M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 33, 3396–3404 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Moraru, C., Varsani, A. & Kropinski, A. M. VIRIDIC—a novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 12, 1268 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Meier-Kolthoff, J. P., Auch, A. F., Klenk, H.-P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 60 (2013).

    Google Scholar 

  81. Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Farris, J. S. Estimating phylogenetic trees from distance matrices. Am. Nat. 106, 645–668 (1972).

    Google Scholar 

  83. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nishimura, Y. et al. ViPTree: the viral proteomic tree server. Bioinformatics 33, 2379–2380 (2017).

    CAS  PubMed  Google Scholar 

  85. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

  88. Dufault-Thompson, K., Steffensen, J. L. & Zhang, Y. in Metabolic Network Reconstruction and Modeling: Methods and Protocols (ed. Fondi, M.) 131–150 (Springer, 2018).

  89. Steffensen, J. L., Dufault-Thompson, K. & Zhang, Y. PSAMM: a portable system for the analysis of metabolic models. PLoS Comput. Biol. 12, e1004732–e1004732 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    CAS  PubMed  Google Scholar 

  91. Gonnerman, M. C., Benedict, M. N., Feist, A. M., Metcalf, W. W. & Price, N. D. Genomically and biochemically accurate metabolic reconstruction of Methanosarcina barkeri Fusaro, iMG746. Biotechnol. J. 8, 1070–1079 (2013).

    CAS  PubMed  Google Scholar 

  92. Goyal, N., Widiastuti, H., Karimi, I. A. & Zhou, Z. A genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane. Mol. Biosyst. 10, 1043–1054 (2014).

    CAS  PubMed  Google Scholar 

  93. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).

    CAS  PubMed  Google Scholar 

  94. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    CAS  PubMed  Google Scholar 

  95. Saier, M. H. Jr et al. The transporter classification database (TCDB): recent advances. Nucleic Acids Res. 44, D372–D379 (2016).

    CAS  PubMed  Google Scholar 

  96. Neidhardt, F. C., Neidhardt, F. C. N., Ingraham, J. L. & Schaechter, M. Physiology of the Bacterial Cell: A Molecular Approach (Sinauer Associates, 1990).

  97. Nelson, D. L., Nelson, R. D. & Cox, M. M. Lehninger Principles of Biochemistry (W.H. Freeman, 2004).

  98. Zhang, Y. & Sievert, S. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front. Microbiol. 5, 110 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. Biswas, A., Gagnon, J. N., Brouns, S. J. J., Fineran, P. C. & Brown, C. M. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol. 10, 817–827 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Schneider, T. D. & Stephens, R. M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Oberortner, E., Cheng, J.-F., Hillson, N. J. & Deutsch, S. Streamlining the design-to-build transition with build-optimization software tools. ACS Synth. Biol. 6, 485–496 (2017).

    CAS  PubMed  Google Scholar 

  104. Garamella, J., Marshall, R., Rustad, M. & Noireaux, V. The All E. coli TX-TL Toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth. Biol. 5, 344–355 (2016).

    CAS  PubMed  Google Scholar 

  105. Shin, J. & Noireaux, V. An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth. Biol. 1, 29–41 (2012).

    CAS  PubMed  Google Scholar 

  106. Leenay, R. T. et al. Identifying and visualizing functional PAM diversity across CRISPR–Cas systems. Mol. Cell 62, 137–147 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a web browser. BMC Bioinform. 12, 385 (2011).

    Google Scholar 

  108. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).

    CAS  Google Scholar 

  109. Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    CAS  PubMed  Google Scholar 

  110. Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat. Biotechnol. 38, 1079–1086 (2020).

    CAS  PubMed  Google Scholar 

  111. Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).

    CAS  PubMed  Google Scholar 

  112. Esser, S. P. & Probst, A. J. Genomes of Ca. Altiarchaeum and Ca. Huberiarchaeum from Crystal Geyser and Horonobe Underground Research Laboratory. figshare https://doi.org/10.6084/m9.figshare.22339555 (2023).

  113. Esser, S. P., Rahlff, J. & Probst, A. J. Viral operational taxonomic units (vOTUs) from Crystal Geyser. figshare https://doi.org/10.6084/m9.figshare.22738568.v1 (2023).

  114. Turzynski, V., Esser, S. P. & Probst, A. J. Fluorescence in situ hybridization images of Ca. Altiarchaeum and Ca. Huberiarchaeu. figshare https://doi.org/10.6084/m9.figshare.22739849 (2023).

  115. Sharrar, A. M. et al. Novel large sulfur bacteria in the metagenomes of groundwater-fed chemosynthetic microbial mats in the Lake Huron Basin. Front. Microbiol. 8, 791 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Bird, J. T., Baker, B. J., Probst, A. J., Podar, M. & Lloyd, K. G. Culture independent genomic comparisons reveal environmental adaptations for Altiarchaeales. Front. Microbiol. 7, 1221 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Posit team. Rstudio: Integrated development environment for R. https://posit.co/; version 2023.03.0+386 (2022).

Download references

Acknowledgements

This research was funded by the Ministerium für Kultur und Wissenschaft des Landes Nordrhein- Westfalen (Nachwuchsgruppe Dr. Alexander Probst) and the German Science Foundation under project NOVAC (grant no. DFG PR1603/2-1) and through SPP 2141 (grant no. DFG BE6703/1-1). Genome-scale metabolic modelling was supported by the National Science Foundation under grant no. 1553211. The Ministry of Economy, Trade and Industry of Japan funded a part of the work as ‘The project for validating assessment methodology in geological disposal system’ (2019 FY, grant no. JPJ007597). The work (proposal https://doi.org/10.46936/10.25585/60000800) conducted by the US Department of Energy (DOE) Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the US DOE operated under contract no. DE-AC02-05CH11231. M.P. is supported by the Austrian Science Funds (project MAINTAIN, DOC 69 doc.funds). P.S.A. was supported by a postdoctoral fellowship from the Alexander von Humboldt Foundation. J.P. was supported by Aker BP within the framework of the GeneOil Project given to A.J.P. J.R. was supported by the German Science Foundation (grant no. RA3432/1-1, project no. 446702140). Support by the German Federal Ministry of Education and Research within the project ‘MultiKulti’ (BMBF funding code: 161L0285E) is acknowledged. We thank K. Dreger for exemplary server administration and B. Siebers, I. Berg, J. F. Banfield and B. Meyer for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.P.E. and A.J.P. performed genome-resolved metagenomics, while S.P.E. and J.R. performed viromics. J.R. analysed viral genomes with input from M.K. CRISPR–Cas analyses were done by S.P.E., J.R. and A.J.P. SNP analysis was performed by M.P. and T.R. Genome-scale modelling was conducted by W.Z. and Y.Z. with input from S.P.E., P.A.F.G. and A.J.P. J.P. conducted the sliding window analysis with the input from S.P.E., J.R., and A.J.P. Phylogenomic analyses were carried out by P.S.A. T.L.V.B. provided bioinformatic assistance and K. Schwank, I.B. and V.T. performed microscopy and initial metabolic analyses. J.M. and W.B. resampled CG and J.L., T.W. and A.J.P. conducted RNA extraction and sequencing and S.P.E. analysed transcriptomes. J-F.C. synthesized the Cas genes with input from I.K.B., F.W. and C.B. performed binding, cleavage and PAM assays and J.L., J.J., Y.A., T.W. and A.J.P. generated/provided raw data. K. Sures and S.P.E. analysed the archaeal CRISPR–Cas interactions from published NCBI archaeal genomes. A.J.P. conceptualized the work. S.P.E., J.R., W.Z., Y.Z. and A.J.P. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Alexander J. Probst.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Correlation of repeat abundance and abundance of Ca. Altiarchaea genomes.

Spearman rank correlation (two-tailed) of logarithmic abundances of Ca. A. crystalense and logarithmic abundances of repeat sequences of the unassigned CRISPR array (p-value < 3.4 e−16) and the CRISPR system type I-B (p < 2.2 e−16) in metagenomes from CG (n = 66). The grey area depicts the confidence interval of 0.95. The line indicates that the correlation of the genome abundance and repeat abundance is linear. Visualization was performed with R87,117 (version 3.6.1).

Extended Data Fig. 2 Viral clusters predicted by VIRIDIC79.

Heatmap showing intergenomic similarity for viral scaffolds of viral clusters (VC_XY) and some singletons (black). Colouring of viral OTUs (vOTUs) according to Supplementary Table 6. VC_09, _12, _13 determined by the other tools were not found by VIRIDIC. Only scaffolds with intergenomic similarity of >10 between two viral scaffolds are shown.

Extended Data Fig. 3 Coverage analyses of scaffolds targeted by spacers from Ca. Altiarchaea.

Coverage changes within targeted regions by CRISPR system type I-B of Ca. Altiarchaeum and Ca. Huberiarchaeum based on metagenomic read mapping. The vertically grey marked regions are spacer targeted regions of either Ca. Altiarchaeum or Ca. Huberiarchaeum, whereby the horizontally dark grey lines are showing the average coverage of the scaffold. The coloured graphs show the coverage across the spacer targeted region of three samples from the minor eruption phase, where Ca. Altiarchaeum is the most abundant organism (Supplementary Fig. 1).

Extended Data Fig. 4 Spacer targeting analyses of publicly available archaeal genomes.

Directed spacer analysis of 7,012 publicly available archaeal genomes (Supplementary Table 4) shows large clusters of spacers targeting at species level. The targeting spacers (edges) of the genomes Sulfolobus, Methanomicrobia and Halobacterium (nodes) form large clusters performing self-targeting or targeting other genomes of the same family. Edges are colored according to their relationship at least familiy level or lower. The clustering was illustrated with Cytoscape83 (version 3.9.1). Please note that targeting within the same genus might limit the interspecies recombination, as demonstrated in haloarchaea37, or reflect the presence of multiple conserved genomic regions between the genomes.

Supplementary information

Supplementary Information

Supplementary Results, Table 7 and Figs. 1–9.

Reporting Summary

Supplementary Data

Collection of all phylogenetic trees calculated for this study. (1) Phylogenetic tree of Ca. Altiarchaeum crystalense/horonobense and Ca. Huberiarchaeum crystalense/julieae located within the archaeal branch. (2) Phylogenetic analysis of the phenylalanine-tRNA synthetase of Ca. Huberiarchaeum crystalense located within the archaeal branch. Calculated to determine the closest relative within the archaeal branch. (3) Phylogenetic analysis of the phenylalanine-tRNA synthetase of Ca. Altiarchaeum crystalense located within the archaeal branch. Calculated to determine the closest relative within the archaeal branch. (4) Phylogenetic analysis of the lysine-tRNA synthetase of Ca. Huberiarchaeum crystalense located within the archaeal branch. Calculated to determine the closest relative within the archaeal branch. (5) Phylogenetic analysis of the lysine-tRNA synthetase of Ca. Altiarchaeum crystalense located within the archaeal branch. Calculated to determine the closest relative within the archaeal branch.

Supplementary Tables

Supplementary Tables 1–6 and 8–13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esser, S.P., Rahlff, J., Zhao, W. et al. A predicted CRISPR-mediated symbiosis between uncultivated archaea. Nat Microbiol 8, 1619–1633 (2023). https://doi.org/10.1038/s41564-023-01439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01439-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing