Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

A genome catalogue of lake bacterial diversity and its drivers at continental scale

A Publisher Correction to this article was published on 11 October 2023

This article has been updated

Abstract

Lakes are heterogeneous ecosystems inhabited by a rich microbiome whose genomic diversity is poorly defined. We present a continental-scale study of metagenomes representing 6.5 million km2 of the most lake-rich landscape on Earth. Analysis of 308 Canadian lakes resulted in a metagenome-assembled genome (MAG) catalogue of 1,008 mostly novel bacterial genomospecies. Lake trophic state was a leading driver of taxonomic and functional diversity among MAG assemblages, reflecting the responses of communities profiled by 16S rRNA amplicons and gene-centric metagenomics. Coupling the MAG catalogue with watershed geomatics revealed terrestrial influences of soils and land use on assemblages. Agriculture and human population density were drivers of turnover, indicating detectable anthropogenic imprints on lake bacteria at the continental scale. The sensitivity of bacterial assemblages to human impact reinforces lakes as sentinels of environmental change. Overall, the LakePulse MAG catalogue greatly expands the freshwater genomic landscape, advancing an integrative view of diversity across Earth’s microbiomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The LakePulse MAG catalogue: geographical and environmental scope, quality and patterns of local-scale diversity.
Fig. 2: Taxonomic, phylogenetic and functional diversity of the LakePulse MAG catalogue.
Fig. 3: Niche breadth and environmental filtering of MAGs based on taxonomic and functional biogeography.
Fig. 4: Diversity of specific bacterial functions among lake assemblages and individual MAGs.
Fig. 5: Influences of watershed soil and land use on lake bacterial assemblages.

Data availability

Raw metagenome reads were archived in the European Nucleotide Archive under study accession PRJEB29238. Metagenome co-assemblies were deposited and annotated at the Joint Genome Institute (JGI) Genomes OnLine Database (GOLD) under study accession Gs0136026 and analysis projects Ga0495746 (Boreal/Taiga Cordilleras), Ga0495744 (Montane Cordillera), Ga0495745 (Pacific Maritime), Ga0495743 (Taiga Plains), Ga0485099 (Semi-Arid Plateaux), Ga0485102 (Boreal Plains), Ga0485100 (Prairies), Ga0364548 (Mixedwood Plains), Ga0373103 (Boreal Shield), Ga0372599 (Atlantic Highlands) and Ga0372598 (Atlantic Maritime). MAGs from co-assemblies and associated annotations were deposited in Dryad112 and at the European Nucleotide Archive under study accession PRJEB62834.

Publicly available datasets used in this study include HydroLakes v.1.0 (https://www.hydrosheds.org/products/hydrolakes), SoilGrids250m (https://www.soilgrids.org/), ERA5-Land (https://doi.org/10.24381/cds.e2161bac), Canada Ecozones v.5b (https://ccea-ccae.org/ecozones-downloads/), Rfam v.14.2 (https://ftp.ebi.ac.uk/pub/databases/Rfam/14.2/), Transporter Classification Database downloaded on 27 January 2021 (https://tcdb.org/public/tcdb), dbCAN2 HMMdb v.9 (https://bcb.unl.edu/dbCAN2/download/dbCAN-HMMdb-V9.txt), GTDB r95 (https://data.gtdb.ecogenomic.org/releases/release95/) and DADA2-formatted 16S rRNA gene sequences (GTDB_bac120_arc122_ssu_r95.fa.gz; https://doi.org/10.5281/zenodo.3951383). Source data are provided with this paper.

Code availability

Scripts associated with this study are available at https://github.com/rebeccagarner/lakepulse_mags.

Change history

References

  1. Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pernthaler, J. Competition and niche separation of pelagic bacteria in freshwater habitats. Environ. Microbiol. 19, 2133–2150 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Bertilsson, S. & Mehrshad, M. in Encyclopedia of Inland Waters (eds Mehner, T. & Tockner, K.) 601–615 (Elsevier, 2022).

  4. Kratz, T. K., MacIntyre, S. & Webster, K. E. in Ecosystem Function in Heterogeneous Landscapes (eds Lovett, G. M. et al.) 329–347 (Springer, 2005).

  5. Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    Article  CAS  Google Scholar 

  6. Williamson, C. E., Dodds, W., Kratz, T. K. & Palmer, M. A. Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front. Ecol. Environ. 6, 247–254 (2008).

    Article  Google Scholar 

  7. Grossart, H., Massana, R., McMahon, K. D. & Walsh, D. A. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnol. Oceanogr. 65, S2–S20 (2020).

    Article  CAS  Google Scholar 

  8. O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).

    Google Scholar 

  9. Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here? Trends Ecol. Evol. 24, 201–207 (2009).

    Article  PubMed  Google Scholar 

  10. Jane, S. F. et al. Widespread deoxygenation of temperate lakes. Nature 594, 66–70 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Dugan, H. A. et al. Lakes at risk of chloride contamination. Environ. Sci. Technol. 54, 6639–6650 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    Article  PubMed  Google Scholar 

  13. Sheridan, E. A. et al. Plastic pollution fosters more microbial growth in lakes than natural organic matter. Nat. Commun. 13, 4175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Cabello-Yeves, P. J. et al. Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl. Environ. Microbiol. 84, e02132-17 (2018).

    Article  PubMed  Google Scholar 

  17. Okazaki, Y., Nakano, S., Toyoda, A. & Tamaki, H. Long-read-resolved, ecosystem-wide exploration of nucleotide and structural microdiversity of lake bacterioplankton genomes. mSystems 7, e0043322 (2022).

    Article  PubMed  Google Scholar 

  18. Mehrshad, M. et al. Hidden in plain sight—highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome 6, 176 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Arora-Williams, K. et al. Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake. Microbiome 6, 165 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tran, P. Q. et al. Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika. ISME J. 15, 1971–1986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodriguez‐R, L. M., Tsementzi, D., Luo, C. & Konstantinidis, K. T. Iterative subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ. Microbiol. 22, 3394–3412 (2020).

    Article  PubMed  Google Scholar 

  22. Kavagutti, V. S. et al. High-resolution metagenomic reconstruction of the freshwater spring bloom. Microbiome 11, 15 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Buck, M. et al. Comprehensive dataset of shotgun metagenomes from oxygen stratified freshwater lakes and ponds. Sci. Data 8, 131 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huot, Y. et al. The NSERC Canadian Lake Pulse Network: a national assessment of lake health providing science for water management in a changing climate. Sci. Total Environ. 695, 133668 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Kraemer, S. A. et al. A large-scale assessment of lakes reveals a pervasive signal of land use on bacterial communities. ISME J. 14, 3011–3023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wight, J., Varin, M.-P., Robertson, G. J., Huot, Y. & Lang, A. S. Microbiology in the field: construction and validation of a portable incubator for real-time quantification of coliforms and other bacteria. Front. Public Health 8, 607997 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Garner, R. E., Gregory-Eaves, I. & Walsh, D. A. Sediment metagenomes as time capsules of lake microbiomes. mSphere 5, e00512-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garner, R. E. et al. Protist diversity and metabolic strategy in freshwater lakes are shaped by trophic state and watershed land use on a continental scale. mSystems 7, e0031622 (2022).

    Article  PubMed  Google Scholar 

  36. MacKeigan, P. W. et al. Comparing microscopy and DNA metabarcoding techniques for identifying cyanobacteria assemblages across hundreds of lakes. Harmful Algae 113, 102187 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Oliva, A., Garner, R. E., Walsh, D. & Huot, Y. The occurrence of potentially pathogenic fungi and protists in Canadian lakes predicted using geomatics, in situ and satellite-derived variables: towards a tele-epidemiological approach. Water Res. 209, 117935 (2021).

    Article  PubMed  Google Scholar 

  38. Griffiths, K. et al. Pervasive changes in algal indicators since pre-industrial times: a paleolimnological study of changes in primary production and diatom assemblages from ~200 Canadian lakes. Sci. Total Environ. 838, 155938 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Kraemer, S. A., Barbosa da Costa, N., Oliva, A., Huot, Y. & Walsh, D. A. A resistome survey across hundreds of freshwater bacterial communities reveals the impacts of veterinary and human antibiotics use. Front. Microbiol. 13, 995418 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oliva, A. et al. Geospatial analysis reveals a hotspot of fecal bacteria in Canadian prairie lakes linked to agricultural non-point sources. Water Res. 231, 119596 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Sánchez Schacht, J. R., MacKeigan, P. W., Taranu, Z. E., Huot, Y. & Gregory-Eaves, I. Agricultural land use and lake morphology explain substantial variation in water quality across Canada. Preprint at bioRxiv https://doi.org/10.1101/2022.08.29.505280 (2023).

  42. Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533–538 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fernández-Gómez, B. et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 7, 1026–1037 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. De Corte, D. et al. Metagenomic insights into zooplankton-associated bacterial communities. Environ. Microbiol. 20, 492–505 (2018).

    Article  PubMed  Google Scholar 

  46. Ezzedine, J. A., Desdevises, Y. & Jacquet, S. Bdellovibrio and like organisms: current understanding and knowledge gaps of the smallest cellular hunters of the microbial world. Crit. Rev. Microbiol. 48, 428–449 (2022).

    Article  PubMed  Google Scholar 

  47. Brown, C. T. et al.Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523, 208–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He, C. et al. Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. Nat. Microbiol. 6, 354–365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tian, R. et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome 8, 51 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).

    Article  Google Scholar 

  52. Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    Article  PubMed  Google Scholar 

  53. Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Hahn, M. W., Huemer, A., Pitt, A. & Hoetzinger, M. Opening a next‐generation black box: ecological trends for hundreds of species‐like taxa uncovered within a single bacterial >99% 16S rRNA operational taxonomic unit. Mol. Ecol. Resour. 21, 2471–2485 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Azan, S. S. E. & Arnott, S. E. The impact of calcium decline on population growth rates of crustacean zooplankton in Canadian Shield lakes. Limnol. Oceanogr. 63, 602–616 (2018).

    Article  CAS  Google Scholar 

  56. Weyhenmeyer, G. A. et al. Widespread diminishing anthropogenic effects on calcium in freshwaters. Sci. Rep. 9, 10450 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl Acad. Sci. USA 115, E574–E583 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McKee, L. S. et al. Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature. Environ. Microbiol. Rep. 13, 559–581 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. He, S. et al. Ecophysiology of freshwater Verrucomicrobia inferred from metagenome-assembled genomes. mSphere 2, e00277-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Harding, C. J. et al. A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator Bdellovibrio bacteriovorus. Nat. Commun. 11, 4817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berlemont, R. & Martiny, A. C. Glycoside hydrolases across environmental microbial communities. PLoS Comput. Biol. 12, e1005300 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Garron, M.-L. & Henrissat, B. The continuing expansion of CAZymes and their families. Curr. Opin. Chem. Biol. 53, 82–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Delgado, A. & Gómez, J. A. in Principles of Agronomy for Sustainable Agriculture (eds Villalobos, F. J. & Fereres, E.) 15–26 (Springer, 2016).

  64. Marmen, S. et al. The role of land use types and water chemical properties in structuring the microbiomes of a connected lake system. Front. Microbiol. 11, 89 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sperlea, T. et al. The relationship between land cover and microbial community composition in European lakes. Sci. Total Environ. 825, 153732 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Phale, P. S., Sharma, A. & Gautam, K. in Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology (eds Prasad, M. N. V. et al.) 259–278 (Butterworth-Heinemann, 2019).

  67. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Kaushal, S. S. et al. Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications. J. Am. Water Resour. Assoc. 50, 585–614 (2014).

    Article  CAS  Google Scholar 

  69. Salcher, M. M., Schaefle, D., Kaspar, M., Neuenschwander, S. M. & Ghai, R. Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in Methylophilaceae. ISME J. 13, 2764–2777 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Biessy, L., Pearman, J. K., Waters, S., Vandergoes, M. J. & Wood, S. A. Metagenomic insights to the functional potential of sediment microbial communities in freshwater lakes. Metabarcoding Metagenom. 6, e79265 (2022).

    Article  Google Scholar 

  71. Linz, A. M. et al. Freshwater carbon and nutrient cycles revealed through reconstructed population genomes. PeerJ 6, e6075 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Neuenschwander, S. M., Ghai, R., Pernthaler, J. & Salcher, M. M. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J. 12, 185–198 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. NSERC Canadian Lake Pulse Network. NSERC Canadian Lake Pulse Network Field Manual 2017–2018–2019 Surveys (eds Varin, M.-P. et al.) https://doi.org/10.17118/11143/18662 (Université de Sherbrooke, 2021).

  74. Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present (Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2019).

  76. Canadian Environmental Quality Guidelines. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Phosphorus: Canadian Guidance Framework for the Management of Freshwater Systems (Canadian Council of Ministers of the Environment, 2004).

  77. Canada Ecozones (Canadian Council on Ecological Areas, 2014); https://ccea-ccae.org/ecozones-downloads/

  78. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, D. et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kalvari, I. et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 49, D192–D200 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Aramaki, T. et al.KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Saier, M. H. et al. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res. 44, D372–D379 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Terrapon, N., Lombard, V., Gilbert, H. J. & Henrissat, B. Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics 31, 647–655 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bushnell, B. BBMap (SourceForge, 2015).

  95. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nayfach, S. & Pollard, K. S. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 16, 51 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Castro, J. C. et al. imGLAD: accurate detection and quantification of target organisms in metagenomes. PeerJ 6, e5882 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article  Google Scholar 

  101. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Huntemann, M. et al. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4). Stand. Genomic Sci. 11, 17 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  105. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alishum, A. DADA2 formatted 16S rRNA gene sequences for both bacteria & archaea. Zenodo https://doi.org/10.5281/zenodo.3951383 (2020).

  107. Oksanen, J. et al. vegan: an R package for community ecologists (CRAN, 2020).

  108. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Fitzpatrick, M. C. et al. gdm: generalized dissimilarity modeling (CRAN, 2021).

  110. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  111. Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article  Google Scholar 

  112. Garner, R. et al. The LakePulse Metagenome-Assembled Genome catalogue. Dryad https://doi.org/10.5061/dryad.zkh1893fs (2023).

Download references

Acknowledgements

This study was funded by the NSERC Canadian LakePulse Network (Strategic Network Grant NETGP-479720) and Canada Research Chairs held by D.A.W. and Y.H. R.E.G. and V.E.O. received scholarships from the NSERC CREATE ÉcoLac Training Program in Lake and Fluvial Ecology. R.E.G. also received support from a Fonds de recherche du Québec Nature et technologies Doctoral Research Scholarship and the Stephen Bronfman Graduate Scholarship in Environmental Studies. The pan-Canadian field campaigns were made possible through the immense commitment and efforts of the LakePulse sampling crews and support teams, and the cooperation and assistance of Indigenous groups, municipal and park employees, lake associations and landowners. We thank the LakePulse researchers involved in the generation, management and quality control of the dataset, and acknowledge contributions from J. Juric, P. MacKeigan, C. Paquette, M. Beaulieu, K. Griffiths, G. Potvin, B. Cremella, G. Diab, V. Fugère, J. Kim, A. Oliva and K. Velghe. We also thank W. Brookes, S. Simpson and Compute Canada for bioinformatics technical support.

Author information

Authors and Affiliations

Authors

Contributions

D.A.W. conceived the study and designed the analyses with R.E.G. R.E.G., S.A.K. and V.E.O. performed the bioinformatic analyses. M.F. performed the geomatic analyses. M.-P.V. coordinated the LakePulse field campaigns and data quality control. Y.H. conceived and directed the LakePulse Network. R.E.G. and D.A.W. wrote the manuscript. All authors read and improved the final manuscript.

Corresponding author

Correspondence to David A. Walsh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Luis Rodriguez-R, Helmut Bürgmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Project workflow illustrating the generation and analysis of the LakePulse MAG catalogue.

Extended Data Fig. 2

Distributions of (a) geography, (b) lake morphometry, (c) watershed soil, (d) land use, (e) climate, and (f) surface water physicochemistry variables. Colours represent ecozones and ecozone medians are indicated by dashed lines.

Extended Data Fig. 3

Number of MAGs generated within each ecozone co-assembly.

Extended Data Fig. 4

Comparison of taxonomic diversity in MAG and 16S rRNA gene ASV datasets: percentages of MAGs and ASVs assigned to (a) phyla and (b) orders.

Extended Data Fig. 5

Phylum-level biogeographic distributions of MAGs.

Extended Data Fig. 6 Hierarchical clustering (Ward’s linkage) of MAG phylum-level taxonomic assemblages.

Letter symbols above each MAG assemblage (scaled to relative TAD80) represent ecozones and coloured squares represent lake chlorophyll-a concentration.

Extended Data Fig. 7

PCoAs of (a) the taxonomic variation among ASV assemblages based on Jaccard dissimilarities and (b) the variation in metabolic gene content among metagenomes based on Bray-Curtis dissimilarities.

Extended Data Fig. 8 Significant predictors of (a) taxonomic and functional turnover across MAG assemblages and community profiles and (b) turnover in specific metabolic functions across MAG assemblages.

The height of bars represents the relative importance of predictors within the GDM. MAG assemblage turnover is shown above zero and community (ASV or metagenome) turnover is shown below zero.

Extended Data Fig. 9 Gene maps of polysaccharide utilization loci (PULs) identified across Bacteroidota MAGs.

Arrows indicate gene directions. Colours represent gene types (SusCD, CAZymes, tRNA genes, other KOs).

Extended Data Fig. 10

PCoA showing the variation in xenobiotics biodegradation and metabolism among MAG assemblages.

Supplementary information

Reporting Summary

Supplementary Tables 1–4

Supplementary Table 1: Summary of metagenome information: lake names, accession information, sampling coordinates and assembly characteristics. Table 2: Summary of MAG quality, characteristics, taxonomy, associated file names, marker gene content and TAD80 across 300 freshwater to oligosaline lakes. Table 3: Number of novel MAGs in each phylum. Table 4: Generalized dissimilarity modelling results for MAG assemblages and community (ASV and metagenome) profiles across lakes based on taxonomic and functional composition.

Peer Review File

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garner, R.E., Kraemer, S.A., Onana, V.E. et al. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nat Microbiol 8, 1920–1934 (2023). https://doi.org/10.1038/s41564-023-01435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01435-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing