Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coral–algal endosymbiosis characterized using RNAi and single-cell RNA-seq

Abstract

Corals form an endosymbiotic relationship with the dinoflagellate algae Symbiodiniaceae, but ocean warming can trigger algal loss, coral bleaching and death, and the degradation of ecosystems. Mitigation of coral death requires a mechanistic understanding of coral–algal endosymbiosis. Here we report an RNA interference (RNAi) method and its application to study genes involved in early steps of endosymbiosis in the soft coral Xenia sp. We show that a host endosymbiotic cell marker called LePin (lectin and kazal protease inhibitor domains) is a secreted Xenia lectin that binds to algae to initiate phagocytosis of the algae and coral immune response modulation. The evolutionary conservation of domains in LePin among marine anthozoans performing endosymbiosis suggests a general role in coral–algal recognition. Our work sheds light on the phagocytic machinery and posits a mechanism for symbiosome formation, helping in efforts to understand and preserve coral–algal relationships in the face of climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: shRNA knockdown of genes in Xenia.
Fig. 2: LePin aids the formation of new alga-containing Xenia cells and impacts gene expression in the endosymbiotic cell lineage.
Fig. 3: LePin facilitates alga attachment to the stalk_mouth region of the gastrodermis.
Fig. 4: LePin in alga binding and recognition.
Fig. 5: Scavenger receptors and actin regulators for endosymbiosis.

Similar content being viewed by others

Data availability

We have uploaded all raw data to NCBI (PRJNA869069). The Xenia genome is also available at NCBI (Genebank accession: JAJSDR000000000.1, https://www.ncbi.nlm.nih.gov/assembly/GCA_021976095.1). Select intermediate RDS objects are available at figshare (https://figshare.com/articles/dataset/Processed_R_objects_for_LePin_RNAi_/20481900). The Protein sequence for phylogenetic tree-building were downloaded from different sources: Acropora digitifera, A. millepora, A. hyacinthus, A. palmata62 (no genome version was available for these four genomes, data were downloaded in April 2019), Aiptasia genome (v1.0)63, Stylophora pistillata (v1.0)64, Fungia sp. (v1.0),Galaxea fascicularis (v1.0), Goniastrea aspera (v1.0), from reef genomics (http://reefgenomics.org/), Nematostella vectensis (ASM20922v1)65 from JGI, Orbicella faveolata (v1.0, GCF_002042975.1), Dendronephthya gigantea(DenGig_1.0, GCF_004324845.1) from NCBI, Renilla reniformis(v1) from http://ryanlab.whitney.ufl.edu/genomes/Renilla_reniformis/, Hydra viridissima66 (v1) from https://marinegenomics.oist.jp/hydra_viridissima_a99/viewer/download?project_id=82 and Hydra magnipapillata (v2)67 from https://research.nhgri.nih.gov/hydra/. Source data are provided with this paper.

Code availability

All analysis codes for scRNA-seq and alga counting are available in GitHub at https://github.com/MinjieHu/Xenia_RNAi.

References

  1. Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tang, B. L. Thoughts on a very acidic symbiosome. Front. Microbiol. 6, 816 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barott, K. L., Venn, A. A., Perez, S. O., Tambutté, S. & Tresguerres, M. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc. Natl Acad. Sci. USA 112, 607–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl Acad. Sci. USA 118, e2022653118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hu, M., Zheng, X., Fan, C.-M. & Zheng, Y. Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia. Nature 582, 534–538 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roth, M. S. The engine of the reef: photobiology of the coral–algal symbiosis. Front. Microbiol. 5, 422 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jinkerson, R. E. et al. Cnidarian-Symbiodiniaceae symbiosis establishment is independent of photosynthesis. Curr. Biol. 32, 2402–2415.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2, 140214 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mohamed, A. R. et al. The transcriptomic response of the coral Acropora digitifera to a competent Symbiodinium strain: the symbiosome as an arrested early phagosome. Mol. Ecol. 25, 3127–3141 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Mohamed, A. R. et al. Dual RNA-sequencing analyses of a coral and its native symbiont during the establishment of symbiosis. Mol. Ecol. 29, 3921–3937 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Yoshioka, Y., Yamashita, H., Suzuki, G. & Shinzato, C. Larval transcriptomic responses of a stony coral, Acropora tenuis, during initial contact with the native symbiont, Symbiodinium microadriaticum. Sci. Rep. 12, 2854 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bellantuono, A. J., Dougan, K. E., Granados-Cifuentes, C. & Rodriguez-Lanetty, M. Free-living and symbiotic lifestyles of a thermotolerant coral endosymbiont display profoundly distinct transcriptomes under both stable and heat stress conditions. Mol. Ecol. 28, 5265–5281 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Levy, S. et al. A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell 184, 2973–2987.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B 273, 2305–2312 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Logan, C. A., Dunne, J. P., Ryan, J. S., Baskett, M. L. & Donner, S. D. Quantifying global potential for coral evolutionary response to climate change. Nat. Clim. Change 11, 537–542 (2021).

    Article  Google Scholar 

  18. Caruso, C., Hughes, K. & Drury, C. Selecting heat-tolerant corals for proactive reef restoration. Front. Mar. Sci. 8, 632027 (2021).

  19. Buerger, P. et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. 6, eaba2498 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ganot, P. et al. Ubiquitous macropinocytosis in anthozoans. eLife 9, e50022 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mattox, D. E. & Bailey-Kellogg, C. Comprehensive analysis of lectin-glycan interactions reveals determinants of lectin specificity. PLoS Comput. Biol. 17, e1009470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koike, K. et al. Octocoral chemical signaling selects and controls dinoflagellate symbionts. Biol. Bull. 207, 80–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Wood-Charlson, E. M., Hollingsworth, L. L., Krupp, D. A. & Weis, V. M. Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cell. Microbiol. 8, 1985–1993 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Kita, A., Jimbo, M., Sakai, R., Morimoto, Y. & Miki, K. Crystal structure of a symbiosis-related lectin from octocoral. Glycobiology 25, 1016–1023 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Wood-Charlson, E. M. & Weis, V. M. The diversity of C-type lectins in the genome of a basal metazoan, Nematostella vectensis. Dev. Comp. Immunol. 33, 881–889 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Siebert, S. et al. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science 365, eaav9314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kotliar, D. et al. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-seq. eLife 8, e43803 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Schwarz, J. A., Krupp, D. A. & Weis, V. M. Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol. Bull. 196, 70–79 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Taban, Q., Mumtaz, P. T., Masoodi, K. Z., Haq, E. & Ahmad, S. M. Scavenger receptors in host defense: from functional aspects to mode of action. Cell Commun. Signal. 20, 2 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Neubauer, E. F., Poole, A. Z., Weis, V. M. & Davy, S. K. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis. PeerJ 4, e2692 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Silverstein, R. L. & Febbraio, M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal. 2, re3 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stuart, L. M. et al. Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J. Cell Biol. 170, 477–485 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reichhardt, M. P., Holmskov, U. & Meri, S. SALSA—a dance on a slippery floor with changing partners. Mol. Immunol. 89, 100–110 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Rosenstiel, P. et al. Regulation of DMBT1 via NOD2 and TLR4 in intestinal epithelial cells modulates bacterial recognition and invasion. J. Immunol. 178, 8203–8211 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Fransolet, D., Roberty, S. & Plumier, J.-C. Establishment of endosymbiosis: the case of cnidarians and Symbiodinium. J. Exp. Mar. Biol. Ecol. 420–421, 1–7 (2012).

  41. Vorselen, D. et al. Phagocytic ‘teeth’ and myosin-II ‘jaw’ power target constriction during phagocytosis. eLife 10, e68627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liebl, D. & Griffiths, G. Transient assembly of F-actin by phagosomes delays phagosome fusion with lysosomes in cargo-overloaded macrophages. J. Cell Sci. 122, 2935–2945 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Popov, I. K., Ray, H. J., Skoglund, P., Keller, R. & Chang, C. The RhoGEF protein Plekhg5 regulates apical constriction of bottle cells during gastrulation. Development 145, dev168922 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Baranov, M. V. et al. SWAP70 organizes the actin cytoskeleton and is essential for phagocytosis. Cell Rep. 17, 1518–1531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yuyama, I., Higuchi, T. & Hidaka, M. Application of RNA interference technology to acroporid juvenile corals. Front. Mar. Sci. 8, 688876 (2021).

  46. Burkhardt, I., de Rond, T., Chen, P. Y.-T. & Moore, B. S. Ancient plant-like terpene biosynthesis in corals. Nat. Chem. Biol. 18, 664–669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Scesa, P. D., Lin, Z. & Schmidt, E. W. Ancient defensive terpene biosynthetic gene clusters in the soft corals. Nat. Chem. Biol. 18, 659–663 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cleves, P. A., Strader, M. E., Bay, L. K., Pringle, J. R. & Matz, M. V. CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc. Natl Acad. Sci. USA 115, 5235–5240 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parkinson, J. E. et al. Subtle differences in symbiont cell surface glycan profiles do not explain species-specific colonization rates in a model cnidarian-algal symbiosis. Front. Microbiol. 9, 842 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Silverstein, R. N., Correa, A. M. & Baker, A. C. Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc. Biol. Sci. 279, 2609–2618 (2012).

    PubMed  PubMed Central  Google Scholar 

  51. Weis, V. M. Cell biology of coral symbiosis: foundational study can inform solutions to the coral reef crisis. Integr. Comp. Biol. 59, 845–855 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Hu, M. et al. Liver-Enriched Gene 1, a glycosylated secretory protein, binds to FGFR and mediates an anti-stress pathway to protect liver development in zebrafish. PLoS Genet. 12, e1005881 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Forsthoefel, D. J., Ross, K. G., Newmark, P. A. & Zayas, R. M. Fixation, processing, and immunofluorescent labeling of whole mount planarians. Methods Mol. Biol. 1774, 353–366 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moran, Y., Praher, D., Fredman, D. & Technau, U. The evolution of microRNA pathway protein components in Cnidaria. Mol. Biol. Evol. 30, 2541–2552 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu, S. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48, D265–D268 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Jeon, Y. et al. The draft genome of an octocoral, Dendronephthya gigantea. Genome Biol. Evol. 11, 949–953 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ab, I., Na, L., Nv, Z. & Tn, D. Comparison of fatty acid compositions of azooxanthellate Dendronephthya and zooxanthellate soft coral species. Comp. Biochem. Physiol. B 148, 314–321 (2007).

    Article  Google Scholar 

  59. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bhattacharya, D. et al. Comparative genomics explains the evolutionary success of reef-forming corals. eLife 5, e13288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Baumgarten, S. et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc. Natl Acad. Sci. USA 112, 11893–11898 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Voolstra, C. R. et al. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Sci. Rep. 7, 17583 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Hamada, M., Satoh, N. & Khalturin, K. A reference genome from the symbiotic hydrozoan, Hydra viridissima. G3 10, 3883–3895 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chapman, J. A. et al. The dynamic genome of Hydra. Nature 464, 592–596 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Tan and A. Pinder for assistance with all the sequencing and initial processing of raw reads; N. Marvi for the model sketch; L. Hugendubler and M. Watts for maintaining the coral aquarium; and R. Pedersen and J. Tran for critical comments. This work was supported by the Gordon and Betty Moore Foundation, Aquatic Symbiosis no. GBMF9198 (https://doi.org/10.37807/GBMF9198, Y.Z.).

Author information

Authors and Affiliations

Authors

Contributions

M.H.and Y.Z. conceived the project. M.H. and Y.Z. designed experiments. M.H. and Y.B. performed the experiments. M.H. and X.Z. analysed the data. M.H., Y.B., X.Z. and Y.Z. interpreted the data. M.H. and Y.Z. wrote the manuscript.

Corresponding authors

Correspondence to Minjie Hu or Yixian Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Ben Jenkins and Cheong Xin Chan for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Phylogenetic tree and domain organization of RNAi components in different cnidarians.

Phylogenetic tree and domain organization of Argonaute (a) and Dicer proteins (b). The bootstrap value is indicated at each branch of the trees. Abbreviations: PAZ, PAZ or PAZ_argonaute_like domain; Piwi, Piwi-like or Piwi_ago-like domain; DEXHc_dicer, DEXH-box, helicase domain of endoribonuclease Dicer; SF2_C_dicer, C-terminal helicase domain of the endoribonuclease Dicer; MPH1, ERCC4-related helicase domain; RIBOc, Ribonuclease III C terminal domain; Rnc, dsRNA-specific ribonuclease.

Extended Data Fig. 2 Illustration for proteins studied.

Illustrations of domains and target regions of shRNA and peptides (for antibodies) for the proteins studied in this report. One single shRNA targets the four heavily repeated regions in DMBT1 (d).

Extended Data Fig. 3 Domain organization of the predicted LePin-like proteins from sequenced marine anthozoans plotted with the phylogenetic tree based on LePin sequences.

CLECT: C type Lectin domain; EGF/EGF_Ca/EGF_3/cEGF: EGF, EGF-Cacium binding and EGF like domains (EGF_3 or cEGF); H_lectin: H type lectin domain; Kazal: kazal domain. Xenia LePin is highlighted by a dashed blue rectangle. The two lectins in Nematostella vectensis (highlighted by a dashed magenta rectangle) that are most similar to Xenia LePin miss a few domains and appear as an outgroup. The bootstrap value is indicated at each branch of the trees.

Extended Data Fig. 4 Additional analyses of scRNA-seq for RNAi-treated samples.

a, The integrated UMAP of all cells from the control and LePin RNAi samples. b, c, Distributions of the detected UMI (Unique Molecular Identifier) numbers (b) and gene numbers (c).

Extended Data Fig. 5 Heat map of gene expression along the host endosymbiotic cell developmental progression as measured by scRNA-seq in this study.

Most previously defined genes expressed in the host progenitor endosymbiotic cells (not carrying algae) have higher expression during the early stages of lineage progress than later stages in the new trajectory analysis.

Extended Data Fig. 6 Relative expression of other GEPs identified by NMF analysis along the trajectory in control and LePin RNAi treated samples.

The box plot indicates the GEP expression distribution for the cells within one pseudotime unit. The box represents the middle 50% of the data. The line in the box is the median. The upper and lower edges of the box represent the upper and lower quartiles, respectively. The whiskers extend to 1.5 times the interquartile range. n= 314 cell for control and 217 cell for LePin RNAi.

Extended Data Fig. 7 Unbiased high throughput quantification of algae attached to the surface of Xenia gastrodermis.

a, An example of an epifluorescence image from a tissue section. Blue, DAPI staining of nuclei. Red, auto-fluorescence from the alga. b, Labeling of all cells by the DAPI signal. Each nucleus was pseudo colored to enable counting. c, Labeling of alga cells by the auto-fluorescence signal. Each alga was pseudo colored to enable counting. d, Tissue mask (green) is generated with a lower threshold of the DAPI signal and overlaid with the algal autofluorescence channel. The algae within the tissue mask are labeled blue. The algae outside or not completely inside the tissue mask are labeled pink. Red arrows point to the algae protruding from the tissue surface and are counted as algae attached to the surface of the gastrodermis. Scale bar, 50μm. . Four independent experiments were performed and quantified.

Extended Data Fig. 8 Prediction of signal peptide and transmembrane sequences in LePin.

a, the signal peptide is predicted by SignalP 5.0 with the Eukarya model. OTHER: no signal peptide predicted. Only the first 70 amino acids of LePin are plotted. b, LePin is predicted as a protein without transmembrane domain. TMHMM (v2.0) was used for the prediction. The full length LePin sequence is plotted.

Extended Data Fig. 9 Quantification of LePin signal on the isolated free algae in Xenia by FACS.

a, b, Gating strategy for the free algae in Xenia. The algae are first gated based on the DAPI staining of the nuclei and algae autofluoresce (Cy5.5 signal) (a, free algae gate1). The algae are further gated based on the forward scatter (FSC) and side scatter (SSC) signals to further exclude those algae that are inside the Xenia cells (b, free algae gate2). c-e, LePin signal distribution on free algae in control (c) and LePin knocking down samples (d,e). Color codes for individual animals. The percentage of algae with high LePin signals (as indicated by the brackets) are quantified and labeled.

Extended Data Fig. 10 The pairwise alignment of DMBT1 from Xenia and mouse.

The conserved SR domains are enclosed with red rectangles.

Supplementary information

Reporting Summary

Supplementary Table

Supplementary Tables

Supplementary Data

Fasta file for NMF analysis related protein sequence

Source data

Source Data Fig. 1

Raw data for Fig. 2c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Bai, Y., Zheng, X. et al. Coral–algal endosymbiosis characterized using RNAi and single-cell RNA-seq. Nat Microbiol 8, 1240–1251 (2023). https://doi.org/10.1038/s41564-023-01397-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01397-9

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology