Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A self-transmissible plasmid from a hyperthermophile that facilitates genetic modification of diverse Archaea

Abstract

Conjugative plasmids are self-transmissible mobile genetic elements that transfer DNA between host cells via type IV secretion systems (T4SS). While T4SS-mediated conjugation has been well-studied in bacteria, information is sparse in Archaea and known representatives exist only in the Sulfolobales order of Crenarchaeota. Here we present the first self-transmissible plasmid identified in a Euryarchaeon, Thermococcus sp. 33-3. The 103 kbp plasmid, pT33-3, is seen in CRISPR spacers throughout the Thermococcales order. We demonstrate that pT33-3 is a bona fide conjugative plasmid that requires cell-to-cell contact and is dependent on canonical, plasmid-encoded T4SS-like genes. Under laboratory conditions, pT33-3 transfers to various Thermococcales and transconjugants propagate at 100 °C. Using pT33-3, we developed a genetic toolkit that allows modification of phylogenetically diverse Archaeal genomes. We demonstrate pT33-3-mediated plasmid mobilization and subsequent targeted genome modification in previously untransformable Thermococcales species, and extend this process to interphylum transfer to a Crenarchaeon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of pT33-3 and evidence for CRISPR spacer targeting.
Fig. 2: Interspecies transfer of pT33-3.
Fig. 3: pT33-3 mediated mobilization of shuttle vectors.
Fig. 4: pT33-3 mediated genome modification.

Similar content being viewed by others

Data availability

The genome sequence for Thermococcus sp. 33-3 has been deposited with ENA (number GCA_946300405). Sequences of all plasmids, genomes and primers used in this study are available in Dryad at https://doi.org/10.5061/dryad.2jm63xst9.

References

  1. Lederberg, J., Cavalli, L. L. & Lederberg, E. M. Sex compatibility in Escherichia Coli. Genetics 37, 720–730 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Elisabeth, G., Günther, M. & Manuel, E. Conjugative plasmid transfer in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67, 277–301 (2003).

    Article  Google Scholar 

  3. de la Cruz, F., Frost, L. S., Meyer, R. J. & Zechner, E. L. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol. Rev. 34, 18–40 (2010).

    Article  PubMed  Google Scholar 

  4. Ramirez, M. S., Traglia, G. M., Lin, D. L., Tran, T. & Tolmasky, M. E. Plasmid-mediated antibiotic resistance and virulence in gram-negatives: the Klebsiella pneumoniae paradigm. Microbiol. Spectr. 2, 1–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Montero, I., Herrero-Fresno, A., Rodicio, R. & Rodicio, M. R. Efficient mobilization of a resistance derivative of pSLT, the virulence plasmid specific of Salmonella enterica serovar Typhimurium, by an IncI1 plasmid. Plasmid 70, 104–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Cossu, M. et al. Flipping chromosomes in deep-sea archaea. PLoS Genet. 13, e1006847 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tamminen, M., Virta, M., Fani, R. & Fondi, M. Large-scale analysis of plasmid relationships through gene-sharing networks. Mol. Biol. Evol. 29, 1225–1240 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Basta, T., Smyth, J., Forterre, P., Prangishvili, D. & Peng, X. Novel archaeal plasmid pAH1 and its interactions with the lipothrixvirus AFV1. Mol. Microbiol. 71, 23–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Prangishvili, D. et al. Conjugation in Archaea: frequent occurrence of conjugative plasmids in Sulfolobus. Plasmid 40, 190–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Guglielmini, J., de la Cruz, F. & Rocha, E. P. C. Evolution of conjugation and type IV secretion systems. Mol. Biol. Evol. 30, 315–331 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Lepage, E. et al. Molecular diversity of new Thermococcales isolates from a single area of hydrothermal deep-sea vents as revealed by randomly amplified polymorphic DNA fingerprinting and 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 70, 1277–1286 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gorlas, A. et al. Thermococcus nautili sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal deep-sea vent. Int. J. Syst. Evol. Microbiol. 64, 1802–1810 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Soler, N. et al. Two novel families of plasmids from hyperthermophilic archaea encoding new families of replication proteins. Nucleic Acids Res. 38, 5088–5104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alain, K. et al. Thermococcus henrietii sp. nov., a novel extreme thermophilic and piezophilic sulfur-reducing archaeon isolated from a deep-sea hydrothermal chimney. Int. J. Syst. Evol. Microbiol. 71, https://doi.org/10.1099/ijsem.0.004895 (2021).

  15. Strang, L. C. Genomic Insights and Ecological Adaptations of Deep-Subsurface and Near Subsurface Thermococcus Isolates (Western Washington Univ., 2020).

  16. Gehring, A. M. et al. Genome replication in Thermococcus kodakarensis independent of Cdc6 and an origin of replication. Front. Microbiol. 8, 2084 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Freeman, J. M., Plasterer, T. N., Smith, T. F. & Mohr, S. C. Patterns of genome organization in bacteria. Science https://doi.org/10.1126/science.279.5358.1827a (1998).

    Article  Google Scholar 

  18. Díaz-Orejas, R., Espinosa, M. & Yeo, C. C. The importance of the expendable: toxin-antitoxin genes in plasmids and chromosomes. Front. Microbiol. 8, 1479 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guynet, C. & de la Cruz, F. Plasmid segregation without partition. Mob. Genet. Elem. 1, 236–241 (2011).

    Article  Google Scholar 

  20. Krupovic, M., Gribaldo, S., Bamford, D. H. & Forterre, P. The evolutionary history of archaeal MCM helicases: a case study of vertical evolution combined with hitchhiking of mobile genetic elements. Mol. Biol. Evol. 27, 2716–2732 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Grohmann, E., Christie, P. J., Waksman, G. & Backert, S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol. Microbiol. 107, 455–471 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Terns, M. P. & Terns, R. M. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 14, 321–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pinilla-Redondo, R. et al. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz1197 (2019).

    Article  PubMed Central  Google Scholar 

  24. Atomi, H., Imanaka, T. & Fukui, T. Overview of the genetic tools in the Archaea. Front. Microbiol. 3, 337 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Elmore, J. R. et al. Programmable plasmid interference by the CRISPR-Cas system in Thermococcus kodakarensis. RNA Biol. 10, 828–840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matsumi, R., Manabe, K., Fukui, T., Atomi, H. & Imanaka, T. Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance. J. Bacteriol. 189, 2683–2691 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naor, A. & Gophna, U. Cell fusion and hybrids in Archaea: prospects for genome shuffling and accelerated strain development for biotechnology. Bioengineered 4, 126–129 (2013).

    Article  PubMed  Google Scholar 

  28. Sato, T., Fukui, T., Atomi, H. & Imanaka, T. Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 185, 210–220 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Forterre, P., Da Cunha, V. & Catchpole, R. Plasmid vesicles mimicking virions. Nat. Microbiol. 2, 1340–1341 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Erdmann, S., Tschitschko, B., Zhong, L., Raftery, M. J. & Cavicchioli, R. A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells. Nat. Microbiol. 2, 1446–1455 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Willetts, N. & Wilkins, B. Processing of plasmid DNA during bacterial conjugation. Microbiol. Rev. 48, 24–41 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zatyka, M. & Thomas, C. M. Control of genes for conjugative transfer of plasmids and other mobile elements. FEMS Microbiol. Rev. 21, 291–319 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Guglielmini, J. et al. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res. 42, 5715–5727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Draper, O., César, C. E., Machón, C., de la Cruz, F. & Llosa, M. Site-specific recombinase and integrase activities of a conjugative relaxase in recipient cells. Proc. Natl Acad. Sci. USA 102, 16385–16390 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fiala, G., Stetter, K. O., Jannasch, H. W., Langworthy, T. A. & Madon, J. Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Syst. Appl. Microbiol. 8, 106–113 (1986).

    Article  Google Scholar 

  36. Zhang, C., Cooper, T. E., Krause, D. J. & Whitaker, R. J. Augmenting the genetic toolbox for Sulfolobus islandicus with a stringent positive selectable marker for agmatine prototrophy. Appl. Environ. Microbiol. 79, 5539–5549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Erauso, G. et al. Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch. Microbiol. 160, 338–349 (1993).

    Article  CAS  Google Scholar 

  38. Wagner, A. et al. Mechanisms of gene flow in archaea. Nat. Rev. Microbiol. 15, 492–501 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Albers, S.-V. & Meyer, B. H. The archaeal cell envelope. Nat. Rev. Microbiol. 9, 414–426 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Sato, T., Fukui, T., Atomi, H. & Imanaka, T. Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl. Environ. Microbiol. 71, 3889–3899 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lipscomb, G. L. et al. Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl. Environ. Microbiol. 77, 2232–2238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, M.-S. et al. CO-dependent H2 production by genetically engineered Thermococcus onnurineus NA1. Appl. Environ. Microbiol. 79, 2048–2053 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, X. et al. Genetic tools for the piezophilic hyperthermophilic archaeon Pyrococcus yayanosii. Extremophiles 19, 59–67 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Zeng, X. et al. Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J. 3, 873–876 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Akpan, I., Bankole, M. O. & Adesemowo, A. M. A rapid plate culture method for screening of amylase producing micro-organisms. Biotechnol. Tech. 13, 411–413 (1999).

    Article  CAS  Google Scholar 

  46. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krumsiek, J., Arnold, R. & Rattei, T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23, 1026–1028 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20, 473 (2019).

  51. Bland, C. et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8, 209 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Santangelo, T. J., Cubonová, L. & Reeve, J. N. Thermococcus kodakarensis genetics: TK1827-encoded beta-glycosidase, new positive-selection protocol, and targeted and repetitive deletion technology. Appl. Environ. Microbiol. 76, 1044–1052 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Santangelo, T. J., Cubonová, L. & Reeve, J. N. Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. Appl. Environ. Microbiol. 74, 3099–3104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Catchpole, R., Gorlas, A., Oberto, J. & Forterre, P. A series of new E. coli-Thermococcus shuttle vectors compatible with previously existing vectors. Extremophiles 22, 591–598 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14, 587–589 (2017).

  57. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Soler for advice while writing this manuscript. This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement no.772725, project HiPhore to P.F.), under the European Union’s Seventh Framework Program (grant agreement no. 340440, project EVOMOBIL to P.F.) and by the National Institutes of Health (R35GM118160 to M.T.).

Author information

Authors and Affiliations

Authors

Contributions

R.J.C. and E.M. performed the experiments, V.B. and G.M. performed the sequencing, R.J.C., J.O. and V.D.C. performed bioinformatic analyses. M.T., P.F., J.O. and V.D.C. supervised aspects of the project and provided essential expert analysis. R.J.C. wrote the manuscript, with input from M.T., P.F., J.O. and V.D.C.

Corresponding authors

Correspondence to Ryan J. Catchpole or Violette Da Cunha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Adam Valcek and Christa Schleper for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Similarity of T. sp. 33-3 to other species.

Genome alignment between Thermococcus. sp. 33-3 and closely related strains or species, T. nautili (a); T. henrietii EXT12c (b); and T. sp. 26-2 (c). Dots (which form into lines) indicate sequence identity between corresponding regions of the chromosome for the two indicated species. Discontinuities indicate indels; direction changes for example change from pointing north-east to south-east, indicate large-scale inversions.

Extended Data Fig. 2 Bioinformatic identification of pT33-3 origin of replication and transfer.

Plot of cumulative GC skew [(G-C)/(G + C)] and keto excess [(G + T)-(C + A)] for pT33-3. Sharp inflection points are often indicative of origins of replication, origins of transfer, or replication termination sites. These sites are indicated by vertical dashed lines.

Extended Data Fig. 3 Interference assays with CRISPR WT and null strains of T. kodakarensis.

Diamonds indicate data from a single biological replicate (for WT with target plasmid, overlapping points obscure data, n = 3). Wild-type (TS559) T. kodakarensis is unable to be transformed by plasmids encoding a sequence complementary to spacers in its CRISPR array (target plasmid). In contrast, non-target plasmids transform at ~100cfu/μg DNA. Deletion of genes encoding all CRISPR-associated (Cas) proteins abolishes this targeting activity, restoring transformation with target-encoding plasmids.

Extended Data Fig. 4 Deletion of genes homologous to bacterial T4SS.

PCR of knockouts for predicted transfer genes, p0019 and p0132. PCR was carried out using primers binding to pT33-3 outside the homology arms used in pop-in/pop-out recombination.

Extended Data Fig. 5 Transfer rates of genetic markers between T. kodakarensis strains does not require conjugation.

a) T. kodakarensis incubated with purified plasmid DNA (presented as transformants per fg DNA for comparable scale) - T. kodakarensis is naturally competent for DNA uptake. b) Transfer of a non-conjugative plasmid from a T. kodakarensis donor to a plasmid-free recipient – plasmids transfer between T. kodakarensis strains occurs by simple co-culturing. c) Transfer of a chromosomal prototrophic marker from a T. kodakarensis donor to an auxotrophic recipient - chromosomal markers transfer between T. kodakarensis strains. d) Transfer of a chromosomal prototrophic marker from a T. gammatolerans donor to an auxotrophic T. kodakarensis recipient - chromosomal markers are unable to transfer between T. gammatolerans and T. kodakarensis, suggesting allelic exchange is mediated by homologous recombination. e) Transfer of a chromosomal prototrophic marker from a T. kodakarensis donor to an auxotrophic recipient where the marker is encoded at a locus encoding a second prototrophic marker – transfer chromosomal markers requires a suitable receptive genomic site (non-essential). Individual biological replicates (-, n = 3) are presented with average and standard deviation indicated by error bars. g-i) In contrast to T. kodakarensis, T. nautili is unable to receive a shuttle vector by co-culturing, whereas pT33-3 readily transfers (see main text and Fig. 2c).

Extended Data Fig. 6 Identification of oriT-encoding region of pT33-3.

1.5 kb regions surrounding GC-skew/keto excess minima/maxima were cloned into a shuttle vector and transfer observed in the presence of pT33-3 from T. kodakarensis donors. a) oriT1 candidate region. While plasmids encoding this region readily transferred between T. kodakarensis strains, minimal transfer was observed to T. nautili and T. gammatolerans recipients. b) oriT2 candidate region. Plasmids encoding this region readily transferred from T. kodakarensis to T. kodakarensis, T. nautili, and T. gammatolerans, indicating this region encodes the oriT of pT33.3. c) oriT2 region was split into four overlapping fragments. Plasmids encoding both oriT2.1 and oriT2.2 regions transferred to the non-competent recipients, whereas oriT2.3 and oriT2.4 did not, indicating the oriT is encoded by the overlap region between oriT2.1 and oriT2.2. d) The 300 bp overlap between oriT2.1 and oriT2.2 (named oriT300) also confers mobilization ability to plasmids, indicating that this region encodes the oriT of pT33.3.

Extended Data Fig. 7 Phylogeny of VirB4.

a) Figure adapted from Figure 6 of Guglielmini et al.33 (10.1093/nar/gku194) where it was proposed that all archaeal VirB4 sequences arise from a transfer from bacteria within the MPFFATA group. b) Re-creation of MPFFATA and MPFFA phylogeny including VirB4 sequences from integrated elements in other archaeal genomes, and the VirB4 homologue from pT33-3. Phylogeny rooted with MPFF outgroup. pT33-3 VirB4 groups within a clade of Crenarchaeal sequences, suggesting pT33-3 arose from an inter-phylum transfer. Supported branches, computed by aLRT >80 or UFBoot >95, are indicated by dots at nodes (the full tree is provided as an extended data file). The scale bar indicates the average number of substitutions per site.

Extended Data Fig. 8 Strategy employed for allelic exchange in non-competent recipient cells.

a) Schematic diagram of mobilizable plasmid (pMob) encoding pT33-3 oriT sequences and homologous recombination + selectable marker cassette for allelic exchange. b) Transfer of pMob initiating at oriT1 and terminating at oriT2 results in transfer of a non-replicative DNA encoding recombination/marker cassette. This can be a substrate for homologous recombination and allelic exchange with the recipient chromosome. c) Transfer of pMob initiating at oriT2 and terminating at oriT1 results in transfer of a replicative DNA without any selectable marker. Transformant selection on drug-containing media renders these cells non-viable.

Extended Data Fig. 9 PCR screen of S. marinus colonies following conjugation mediated mobilisation of a recombination substrate.

Eight colonies were screened using primers binding to the S. marinus chromosome, outside the homology arms used in allelic exchange. Clean allelic exchange (Δapt::SimR) was observed in 2/8 colonies. Data from a representative replicate is shown, but similar data obtained on 3 occasions.

Supplementary information

Reporting Summary

Supplementary Table

Bioinformatic prediction of pT33-3 ORF function. A combination of BLAST and HHblits was used to predict functions for each ORF in pT33-3. BLAST was performed against the non-redundant protein database. Hits with E-value < 0.01 are highlighted in yellow. HHblits was performed against the UniProt database; however, the majority of hits returned ‘hypothetical protein’ or ‘uncharacterized protein’. Thus, hits were further limited to those with functional annotations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catchpole, R.J., Barbe, V., Magdelenat, G. et al. A self-transmissible plasmid from a hyperthermophile that facilitates genetic modification of diverse Archaea. Nat Microbiol 8, 1339–1347 (2023). https://doi.org/10.1038/s41564-023-01387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01387-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing