Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of bactofilin filaments reveals their mode of membrane binding and lack of polarity

Abstract

Bactofilins are small β-helical proteins that form cytoskeletal filaments in a range of bacteria. Bactofilins have diverse functions, from cell stalk formation in Caulobacter crescentus to chromosome segregation and motility in Myxococcus xanthus. However, the precise molecular architecture of bactofilin filaments has remained unclear. Here, sequence analysis and electron microscopy results reveal that, in addition to being widely distributed across bacteria and archaea, bactofilins are also present in a few eukaryotic lineages such as the Oomycetes. Electron cryomicroscopy analysis demonstrated that the sole bactofilin from Thermus thermophilus (TtBac) forms constitutive filaments that polymerize through end-to-end association of the β-helical domains. Using a nanobody, we determined the near-atomic filament structure, showing that the filaments are non-polar. A polymerization-impairing mutation enabled crystallization and structure determination, while reaffirming the lack of polarity and the strength of the β-stacking interface. To confirm the generality of the lack of polarity, we performed coevolutionary analysis on a large set of sequences. Finally, we determined that the widely conserved N-terminal disordered tail of TtBac is responsible for direct binding to lipid membranes, both on liposomes and in Escherichia coli cells. Membrane binding is probably a common feature of these widespread but only recently discovered filaments of the prokaryotic cytoskeleton.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bactofilins are highly conserved and widespread across bacteria and archaea and also occur in some eukaryotic organisms.
Fig. 2: TtBac forms filaments that show a continuous β-stacking repeat of 4.7 Å.
Fig. 3: Cryo-EM structure of TtBac shows a head-to-head non-polar filament.
Fig. 4: A polymerization-impaired TtBac mutant crystallizes as non-polar filaments with reduced subunit length.
Fig. 5: Evolutionary sequence coupling analysis reveals the conserved non-polar architecture of bactofilin filaments.
Fig. 6: TtBac binds to lipid membranes through its N-terminal tail.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, who will also provide all expression plasmids generated for this study on request. Atomic coordinates have been deposited in PDB with accession codes 6RIA and 6RIB. The cryo-EM volume has been deposited in EMDB with accession code EMD-4887.

References

  1. Wagstaff, J. & Löwe, J. Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat. Rev. Microbiol. 16, 187–201 (2018).

    CAS  PubMed  Google Scholar 

  2. Lin, L. & Thanbichler, M. Nucleotide-independent cytoskeletal scaffolds in bacteria. Cytoskeleton 70, 409–423 (2013).

    CAS  PubMed  Google Scholar 

  3. Kühn, J. et al. Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J. 29, 327–339 (2010).

    PubMed  Google Scholar 

  4. Hay, N. A., Tipper, D. J., Gygi, D. & Hughes, C. A novel membrane protein influencing cell shape and multicellular swarming of Proteus mirabilis. J. Bacteriol. 181, 2008–2016 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Koch, M. K., McHugh, C. A. & Hoiczyk, E. BacM, an N-terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape. Mol. Microbiol. 80, 1031–1051 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shi, C. et al. Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. Sci. Adv. 1, e1501087 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Kassem, M. M., Wang, Y., Boomsma, W. & Lindorff-Larsen, K. Structure of the bacterial cytoskeleton protein bactofilin by NMR chemical shifts and sequence variation. Biophys. J. 110, 2342–2348 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vasa, S. et al. β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR. Proc. Natl Acad. Sci. USA 112, E127–E136 (2015).

    CAS  PubMed  Google Scholar 

  9. Zuckerman, D. M. et al. The bactofilin cytoskeleton protein BacM of Myxococcus xanthus forms an extended β-sheet structure likely mediated by hydrophobic interactions. PLoS ONE 10, e0121074 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Lin, L., Osorio Valeriano, M., Harms, A., Søgaard-Andersen, L. & Thanbichler, M. Bactofilin-mediated organization of the ParABS chromosome segregation system in Myxococcus xanthus. Nat. Commun. 8, 1817 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Bulyha, I. et al. Two small GTPases act in concert with the bactofilin cytoskeleton to regulate dynamic bacterial cell polarity. Dev. Cell 25, 119–131 (2013).

    CAS  PubMed  Google Scholar 

  12. Blair, K. M. et al. The Helicobacter pylori cell shape promoting protein Csd5 interacts with the cell wall, MurF, and the bacterial cytoskeleton. Mol. Microbiol. 110, 114–127 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sycuro, L. K. et al. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori’s helical shape and stomach colonization. Cell 141, 822–833 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jackson, K. M., Schwartz, C., Wachter, J., Rosa, P. A. & Stewart, P. E. A widely conserved bacterial cytoskeletal component influences unique helical shape and motility of the spirochete Leptospira biflexa. Mol. Microbiol. 108, 77–89 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gode-Potratz, C. J., Kustusch, R. J., Breheny, P. J., Weiss, D. S. & McCarter, L. L. Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol. Microbiol. 79, 240–263 (2011).

    CAS  PubMed  Google Scholar 

  16. El Andari, J., Altegoer, F., Bange, G. & Graumann, P. L. Bacillus subtilis bactofilins are essential for flagellar hook- and filament assembly and dynamically localize into structures of less than 100 nm diameter underneath the cell membrane. PLoS ONE 10, e0141546 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Rajagopala, S. V. et al. The protein network of bacterial motility. Mol. Syst. Biol. 3, 128 (2007).

    PubMed  PubMed Central  Google Scholar 

  18. Mendler, K., Chen, H., Parks, D. H., Hug, L. A. & Doxey, A. AnnoTree: visualization and exploration of a functionally annotated microbial tree of life. Nucleic Acids Res. 47, 4442–4448 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    CAS  PubMed  Google Scholar 

  20. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).

    CAS  PubMed  Google Scholar 

  21. Ah-Fong, A. M., Kim, K. S. & Judelson, H. S. RNA-seq of life stages of the oomycete Phytophthora infestans reveals dynamic changes in metabolic, signal transduction, and pathogenesis genes and a major role for calcium signaling in development. BMC Genom. 18, 198 (2017).

    Google Scholar 

  22. Bai, X. C., Rajendra, E., Yang, G., Shi, Y. & Scheres, S. H. Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife 4, e11182 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Ekeberg, M., Lövkvist, C., Lan, Y., Weigt, M. & Aurell, E. Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys. Rev. E 87, 012707 (2013).

    Google Scholar 

  24. Pichoff, S. & Lutkenhaus, J. Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol. Microbiol. 55, 1722–1734 (2005).

    CAS  PubMed  Google Scholar 

  25. Salje, J., van den Ent, F., de Boer, P. & Löwe, J. Direct membrane binding by bacterial actin MreB. Mol. Cell 43, 478–487 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Szeto, T. H., Rowland, S. L., Rothfield, L. I. & King, G. F. Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Proc. Natl Acad. Sci. USA 99, 15693–15698 (2002).

    CAS  PubMed  Google Scholar 

  27. McCarthy, C. G. & Fitzpatrick, D. A. Systematic search for evidence of interdomain horizontal gene transfer from prokaryotes to oomycete lineages. mSphere 1, e00195–16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Richards, T. A., Dacks, J. B., Jenkinson, J. M., Thornton, C. R. & Talbot, N. J. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms. Curr. Biol. 16, 1857–1864 (2006).

    CAS  PubMed  Google Scholar 

  29. Ghosal, D. & Löwe, J. Collaborative protein filaments. EMBO J. 34, 2312–2320 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hussain, S. et al. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife 7, e32471 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Lenarcic, R. et al. Localisation of DivIVA by targeting to negatively curved membranes. EMBO J. 28, 2272–2282 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gündoğdu, M. E. et al. Large ring polymers align FtsZ polymers for normal septum formation. EMBO J. 30, 617–626 (2011).

    PubMed  PubMed Central  Google Scholar 

  33. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mende, D. R. et al. proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes. Nucleic Acids Res. 45, D529–D534 (2017).

    CAS  PubMed  Google Scholar 

  35. Price, M. N., Paramvir, D. S., Arkin, P. A. & Poon, A. F. Y. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    PubMed  PubMed Central  Google Scholar 

  36. Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).

    CAS  PubMed  Google Scholar 

  37. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. He, S. & Scheres, S. H. W. Helical reconstruction in RELION. J. Struct. Biol. 198, 163–176 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS  PubMed  Google Scholar 

  42. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    CAS  Google Scholar 

  44. van den Ent, F., Lockhart, A., Kendrick-Jones, J. & Löwe, J. Crystal structure of the N-terminal domain of MukB: a protein involved in chromosome partitioning. Structure 7, 1181–1187 (1999).

    PubMed  Google Scholar 

  45. Stock, D., Perisic, O. & Löwe, J. Robotic nanolitre protein crystallisation at the MRC Laboratory of Molecular Biology. Prog. Biophys. Mol. Biol. 88, 311–327 (2005).

    CAS  PubMed  Google Scholar 

  46. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).

    CAS  PubMed  Google Scholar 

  47. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    CAS  PubMed  Google Scholar 

  48. Read, R. J. & McCoy, A. J. Using SAD data in Phaser. Acta Crystallogr. D 67, 338–344 (2011).

    CAS  PubMed  Google Scholar 

  49. Turk, D. MAIN software for density averaging, model building, structure refinement and validation. Acta Crystallogr. D 69, 1342–1357 (2013).

    CAS  PubMed  Google Scholar 

  50. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS  PubMed  Google Scholar 

  51. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed  Google Scholar 

  52. Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  PubMed  Google Scholar 

  54. Derelle, R., Purificación, L. -G., Timpano, H. & Moreira, D. A phylogenomic framework to study the diversity and evolution of stramenopiles (=Heterokonts). Mol. Biol. Evol. 33, 2890–2898 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. S. Judelson (UC Riverside) for discussions regarding Oomycetes. We acknowledge Diamond Light Source for the cryo-EM facilities at eBIC. We thank M. Yu (MRC−LMB) for help with synchrotron data collection and the staff at beamline I03 (Diamond Light Source). This work was funded by the MRC (grant no. U105184326 to J.L.) and the Wellcome Trust (grant no. 202754/Z/16/Z to J.L.). J.W. and X.D. were also supported by the Boehringer Ingelheim Fonds.

Author information

Authors and Affiliations

Authors

Contributions

X.D., A.G.L. D.K.-C. and J.L. performed the protein purification experiments. X.D., A.G.L., G.C. and J.L. collected the cryo-EM data and processed the images. A.G.L. and J.L. performed the crystallization and crystallography. J.M.W. performed the phylogeny and coupling analyses. V.L.H. performed the cryo-ET experiments. S.H.M. and A.G.L. performed the SPR experiments and analyses. A.G.L., J.M.W. and J.L. wrote the manuscript.

Corresponding author

Correspondence to Jan Löwe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figs. 1−6, Tables 1−3, Supplementary Video legends, Dataset 2 legend and Supplementary References.

Reporting Summary

Supplementary Dataset 2

Eukaryotic bactofilins.

Supplementary Video 1

The cryo-EM density after helical reconstruction of a TtBac filament bound by NB4-mut2. Boundaries of the bactofilin monomers are clearly visible, as is their antiparallel arrangement in each protofilament. An image from this video is shown in Fig. 3f.

Supplementary Video 2

An overview of the TtBac cryo-EM structure, providing a better 3D impression of the assembly.

Supplementary Video 3

Cryo-ET of an E. coli cell with TtBac-WT overexpressed. Filament bundles are arranged all around the cell’s periphery, under the inner membrane, and are particularly obvious when the video goes through the upper and lower cellular envelope where the bactofilin bundles run at roughly 45° angles to the long cell axis. Images from the tomogram are shown in Fig. 6e (left).

Supplementary Video 4

The same as Supplementary Video 3, but ΔN-TtBac has been overexpressed. Because the filaments no longer bind to the inner membrane of the E. coli cells, a very large bactofilin bundle runs along the long cell axis, also inhibiting cell division at the septum site. An image from this tomogram is shown in Fig. 6e (right).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Gonzalez Llamazares, A., Wagstaff, J.M. et al. The structure of bactofilin filaments reveals their mode of membrane binding and lack of polarity. Nat Microbiol 4, 2357–2368 (2019). https://doi.org/10.1038/s41564-019-0544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0544-0

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology