Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ER-localized Hrd1 ubiquitinates and inactivates Usp15 to promote TLR4-induced inflammation during bacterial infection

Abstract

The special organelle-located MAVS, STING and TLR3 are important for clearing viral infections. Although TLR4 triggers NF-κB activation to produce pro-inflammatory cytokines for bacterial clearance, effectors with special organelle localization have not been identified. Here, we screened more than 280 E3 ubiquitin ligases and discovered that the endoplasmic reticulum-located Hrd1 regulates TLR4-induced inflammation during bacterial infection. Hrd1 interacts directly with the deubiquitinating enzyme Usp15. Unlike the classical function of Hrd1 in endoplasmic reticulum-associated degradation, Usp15 is not degraded but loses its deubiquitinating activity for IκBα deubiquitination, resulting in excessive NF-κB activation. Importantly, Hrd1 deficiency in macrophages protects mice against lipopolysaccharide-induced septic shock, and knockdown of Usp15 in Hrd1-knockout macrophages restores the reduced IL-6 production. This study proposes that there is crosstalk between Hrd1 and TLR4, thereby linking the endoplasmic reticulum–plasma membrane function during bacterial infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ER-localized Hrd1 was identified by RNAi screening to positively regulate inflammation in LPS-stimulated macrophages.
Fig. 2: Hrd1-cKO macrophages specifically reduce TLR4-induced inflammation and NF-κB activation.
Fig. 3: Hrd1 E3-ligase activity is critical for TLR4-induced NF-κB activation independent of ERAD.
Fig. 4: ER-localized Hrd1 directly binds Usp15 and regulates TLR4-induced inflammation.
Fig. 5: Hrd1 promotes the polyubiquitination of Lys21 in Usp15 and inactivates Usp15.
Fig. 6: Hrd1 deficiency protects against LPS- and CLP-induced septic shock.

Similar content being viewed by others

Data availability

The original data that support the findings of this study are available from the corresponding author on request. The Supplementary figures are available in the Supplementary information section.

References

  1. Liu, J. & Cao, X. Cellular and molecular regulation of innate inflammatory responses. Cell. Mol. Immunol. 13, 711–721 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hornung, V. et al. 5’-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Article  PubMed  Google Scholar 

  3. Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6, 981–988 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Xu, L. G. et al. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19, 727–740 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Jeremiah, N. et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124, 5516–5520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun, W. et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl Acad. Sci. USA 106, 8653–8658 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Phillips, M. J. & Voeltz, G. K. Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17, 69–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Saheki, Y. & De Camilli, P. Endoplasmic reticulum-plasma membrane contact sites. Annu. Rev. Biochem. 86, 659–684 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Sullivan, J. S., Kilpatrick, L., Costarino, A. T. Jr, Lee, S. C. & Harris, M. C. Correlation of plasma cytokine elevations with mortality rate in children with sepsis. J. Pediatr. 120, 510–515 (1992).

  13. Nadav, E. et al. A novel mammalian endoplasmic reticulum ubiquitin ligase homologous to the yeast Hrd1. Biochem. Biophys. Res. Commun. 303, 91–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Bordallo, J., Plemper, R. K., Finger, A. & Wolf, D. H. Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9, 209–222 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carvalho, P., Goder, V. & Rapoport, T. A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Baldridge, R. D. & Rapoport, T. A. Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD. Cell 166, 394–407 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xie, W., Kanehara, K., Sayeed, A. & Ng, D. T. Intrinsic conformational determinants signal protein misfolding to the Hrd1/Htm1 endoplasmic reticulum-associated degradation system. Mol. Biol. Cell 20, 3317–3329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaneko, M., Ishiguro, M., Niinuma, Y., Uesugi, M. & Nomura, Y. Human HRD1 protects against ER stress-induced apoptosis through ER-associated degradation. FEBS Lett. 532, 147–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Gao, B., Calhoun, K. & Fang, D. The proinflammatory cytokines IL-1β and TNF-α induce the expression of Synoviolin, an E3 ubiquitin ligase, in mouse synovial fibroblasts via the Erk1/2-ETS1 pathway. Arthritis Res. Ther. 8, R172 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Amano, T. et al. Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. Genes Dev. 17, 2436–2449 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamasaki, S. et al. Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘Synoviolin’. EMBO J. 26, 113–122 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Udalova, I. A., Mantovani, A. & Feldmann, M. Macrophage heterogeneity in the context of rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 472–485 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Kopito, R. R. ER quality control: the cytoplasmic connection. Cell 88, 427–430 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Schweitzer, K., Bozko, P. M., Dubiel, W. & Naumann, M. CSN controls NF-κB by deubiquitinylation of IκBα. EMBO J. 26, 1532–1541 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Torre, S. et al. USP15 regulates type I interferon response and is required for pathogenesis of neuroinflammation. Nat. Immunol. 18, 54–63 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Zou, Q. et al. USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses. Nat. Immunol. 15, 562–570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Buchta, C. M. & Bishop, G. A. TRAF5 negatively regulates TLR signaling in B lymphocytes. J. Immunol. 192, 145–150 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Leulier, F., Lhocine, N., Lemaitre, B. & Meier, P. The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist Gram-negative bacterial infection. Mol. Cell. Biol. 26, 7821–7831 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum–mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607–625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Friedman, J. R. & Voeltz, G. K. The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol. 21, 709–717 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cockcroft, S. & Raghu, P. Phospholipid transport protein function at organelle contact sites. Curr. Opin. Cell Biol. 53, 52–60 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, S. Y., Kyaw, Y. Y. & Cheong, J. Functional interaction of endoplasmic reticulum stress and hepatitis B virus in the pathogenesis of liver diseases. World J. Gastroenterol. 23, 7657–7665 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, S. & Chen, Z. J. Expanding role of ubiquitination in NF-κB signaling. Cell Res. 21, 6–21 (2011).

    Article  PubMed  CAS  Google Scholar 

  34. Hampton, R. Y., Gardner, R. G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7, 2029–2044 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schoebel, S. et al. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548, 352–355 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinon, F., Chen, X., Lee, A. H. & Glimcher, L. H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11, 411–418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jongsma, M. L. et al. An ER-associated pathway defines endosomal architecture for controlled cargo transport. Cell 166, 152–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elliott, P. R. et al. Structural variability of the ubiquitin specific protease DUSP-UBL double domains. FEBS Lett. 585, 3385–3390 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Eichhorn, P. J. et al. USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat. Med. 18, 429–435 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Keren-Kaplan, T. et al. Synthetic biology approach to reconstituting the ubiquitylation cascade in bacteria. EMBO J. 31, 378–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Xu, X. et al. Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders. Cell Res. 28, 48–68 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Clerici, M., Luna-Vargas, M. P., Faesen, A. C. & Sixma, T. K. The DUSP–Ubl domain of USP4 enhances its catalytic efficiency by promoting ubiquitin exchange. Nat. Commun. 5, 5399 (2014).

    Article  PubMed  Google Scholar 

  43. Joosten, L. A. et al. Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88. J. Immunol. 171, 6145–6153 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Maini, R. N. & Taylor, P. C. Anti-cytokine therapy for rheumatoid arthritis. Annu. Rev. Med. 51, 207–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, X. et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51, 226–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Dobbs, N. et al. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18, 157–168 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. New Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Inui, M. et al. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat. Cell Biol. 13, 1368–1375 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Cornelissen, T. et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23, 5227–5242 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Gerakis Y. & Hetz C. Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. FEBS J. 285, 995–1011 (2017).

Download references

Acknowledgements

We thank S. Sun, C. Wang and B. Sun for providing plasmids, A. Lin for the MEF cell lines, W. H. Fang for S. typhimurium (strain SL1344), Y. He for the Lysozyme M (LysM)–Cre+/+ mice and P. Wang for the DUb-7-amido-4-methylcoumarin reagents. We would like to thank the Core Facility of Chemical Biology and Core Facility of Molecular Biology for technical assistance, the National Center for Protein Science Shanghai for the mass spectrometry analysis and electron-microscopy data collection. This work was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB19000000), the Ministry of Science and Technology of China (grant nos. 2016YFD0500207, 2018YFA0800702, 2016YFD0500407 and 2016YFC0905902), the National Natural Science Foundation of China (grant nos. 81825011, 81630043, 81571617, 81671572, 81571552, 81701569, 31700781 and 81801575) and the State Key Laboratory of Cell Biology, SIBCB, CAS (grant no. SKL CBKF2013003). We thank the Genome Tagging Project Center, Shanghai Institute of Biochemistry and Cell Biology, CAS for technical support. H.W. is supported by the Hundred Talents Program of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and Y.Q. performed the majority of experiments and statistical analyses with the help of H.C., L.G., F.Z., L.M., C.Z., X.Z., J.X., R.Z., L.H., X.X., Y.Z. and P.C. participated in part of the ubiquitination experiments. Y.Huang generated the interaction model of Hrd1 and Usp15. H.W., B.W., D.L., Y.L., Y.Q., G.Z., R.B., Y.He and R.H. designed the study. Y.L. and H.W. drafted the manuscript.

Corresponding authors

Correspondence to Ronggui Hu, Bin Wei or Hongyan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Supplementary Tables 1–4 and Supplementary blots.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Qiu, Y., Chen, P. et al. ER-localized Hrd1 ubiquitinates and inactivates Usp15 to promote TLR4-induced inflammation during bacterial infection. Nat Microbiol 4, 2331–2346 (2019). https://doi.org/10.1038/s41564-019-0542-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0542-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology