Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DABs are inorganic carbon pumps found throughout prokaryotic phyla


Bacterial autotrophs often rely on CO2 concentrating mechanisms (CCMs) to assimilate carbon. Although many CCM proteins have been identified, a systematic screen of the components of CCMs is lacking. Here, we performed a genome-wide barcoded transposon screen to identify essential and CCM-related genes in the γ-proteobacterium Halothiobacillus neapolitanus. Screening revealed that the CCM comprises at least 17 and probably no more than 25 genes, most of which are encoded in 3 operons. Two of these operons (DAB1 and DAB2) contain a two-gene locus that encodes a domain of unknown function (Pfam: PF10070) and a putative cation transporter (Pfam: PF00361). Physiological and biochemical assays demonstrated that these proteins—which we name DabA and DabB, for DABs accumulate bicarbonate—assemble into a heterodimeric complex, which contains a putative β-carbonic anhydrase-like active site and functions as an energy-coupled inorganic carbon (Ci) pump. Interestingly, DAB operons are found in a diverse range of bacteria and archaea. We demonstrate that functional DABs are present in the human pathogens Bacillus anthracis and Vibrio cholerae. On the basis of these results, we propose that DABs constitute a class of energized Ci pumps and play a critical role in the metabolism of Ci throughout prokaryotic phyla.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Transposon mutagenesis reveals the essential gene set of a chemolithoautotrophic organism.
Fig. 2: A systematic screen for HCR mutants identifies genes putatively associated with the CCM.
Fig. 3: DABs catalyse active transport of Ci and are energized by a cation gradient.
Fig. 4: DabA contains a β-CA-like active site but is not active outside of the membrane.
Fig. 5: DAB operons are widespread among prokaryotes.
Fig. 6: A hypothetical model of the unidirectional energy-coupled CA activity of DAB complexes.

Data availability

All of the Illumina sequencing data are accessible at the NCBI SRA (BioProject accession number: PRJNA546024). All other data are available on GitHub at

Code availability

All custom code is available on GitHub at


  1. 1.

    Bathellier, C., Tcherkez, G., Lorimer, G. H. & Farquhar, G. D. Rubisco is not really so bad. Plant Cell Environ. 41, 705–716 (2018).

    CAS  PubMed  Google Scholar 

  2. 2.

    Flamholz, A. et al. Revisiting tradeoffs in Rubisco kinetic parameters. Biochemistry-US (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Tcherkez, G. The mechanism of Rubisco-catalysed oxygenation. Plant Cell Environ. 39, 983–997 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Bauwe, H., Hagemann, M. & Fernie, A. R. Photorespiration: players, partners and origin. Trends Plant Sci. 15, 330–336 (2010).

    CAS  PubMed  Google Scholar 

  5. 5.

    Tcherkez, G. G. B., Farquhar, G. D. & Andrews, T. J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl Acad. Sci. USA 103, 7246–7251 (2006).

    CAS  PubMed  Google Scholar 

  6. 6.

    Savir, Y., Noor, E., Milo, R. & Tlusty, T. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc. Natl Acad. Sci. USA 107, 3475–3480 (2010).

    CAS  PubMed  Google Scholar 

  7. 7.

    Mangan, N. M., Flamholz, A., Hood, R. D., Milo, R. & Savage, D. F. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism. Proc. Natl Acad. Sci. USA 113, E5354–E5362 (2016).

    CAS  PubMed  Google Scholar 

  8. 8.

    Raven, J. A., Beardall, J. & Sánchez-Baracaldo, P. The possible evolution and future of CO2-concentrating mechanisms. J. Exp. Bot. 68, 3701–3716 (2017).

    CAS  PubMed  Google Scholar 

  9. 9.

    Rae, B. D., Long, B. M., Badger, M. R. & Price, G. D. Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol. Mol. Biol. Rev. 77, 357–379 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Long, B. M., Rae, B. D., Rolland, V., Förster, B. & Price, G. D. Cyanobacterial CO2-concentrating mechanism components: function and prospects for plant metabolic engineering. Curr. Opin. Plant Biol. 31, 1–8 (2016).

    CAS  Google Scholar 

  11. 11.

    Price, G. D., Badger, M. R. & von Caemmerer, S. The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. Plant Physiol. 155, 20–26 (2011).

    CAS  PubMed  Google Scholar 

  12. 12.

    McGrath, J. M. & Long, S. P. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol. 164, 2247–2261 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Long, B. M. et al. Carboxysome encapsulation of the CO2-fixing enzyme Rubisco in tobacco chloroplasts. Nat. Commun. 9, 3570 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Price, G. D. & Badger, M. R. Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol. 91, 505–513 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hopkinson, B. M., Young, J. N., Tansik, A. L. & Binder, B. J. The minimal CO2-concentrating mechanism of Prochlorococcus spp. MED4 is effective and efficient. Plant Physiol. 166, 2205–2217 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Whitehead, L., Long, B. M., Price, G. D. & Badger, M. R. Comparing the in vivo function of α-carboxysomes and β-carboxysomes in two model cyanobacteria. Plant Physiol. 165, 398–411 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Holthuijzen, Y. A., van Dissel-Emiliani, F. F. M., Kuenen, J. G. & Konings, W. N. Energetic aspects of CO2 uptake in Thiobacillus neapolitanus. Arch. Microbiol. 147, 285–290 (1987).

    CAS  Google Scholar 

  18. 18.

    Price, G. D. & Badger, M. R. Isolation and characterization of high CO2-requiring-mutants of the cyanobacterium Synechococcus PCC7942: two phenotypes that accumulate inorganic carbon but are apparently unable to generate CO2 within the carboxysome. Plant Physiol. 91, 514–525 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Marcus, Y., Schwarz, R., Friedberg, D. & Kaplan, A. High CO2 requiring mutant of Anacystis nidulans R2. Plant Physiol. 82, 610–612 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Bonacci, W. et al. Modularity of a carbon-fixing protein organelle. Proc. Natl Acad. Sci. USA 109, 478–483 (2012).

    CAS  PubMed  Google Scholar 

  21. 21.

    Jorda, J., Lopez, D., Wheatley, N. M. & Yeates, T. O. Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria. Protein Sci. 22, 179–195 (2013).

    CAS  PubMed  Google Scholar 

  22. 22.

    Axen, S. D., Erbilgin, O. & Kerfeld, C. A. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput. Biol. 10, e1003898 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Shibata, M., Ohkawa, H., Katoh, H., Shimoyama, M. & Ogawa, T. Two CO2 uptake systems in cyanobacteria: four systems for inorganic carbon acquisition in Synechocystis sp. strain PCC6803. Funct. Plant Biol. 29, 123–129 (2002).

    CAS  Google Scholar 

  24. 24.

    Price, G. D. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynth. Res. 109, 47–57 (2011).

    CAS  PubMed  Google Scholar 

  25. 25.

    Heinhorst, S., Cannon, G. C. & Shively, J. M. in Complex Intracellular Structures in Prokaryotes (ed. Shively, J. M.) 141–165 (Springer, 2006).

  26. 26.

    Shively, J. M., Ball, F., Brown, D. H. & Saunders, R. E. Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182, 584–586 (1973).

    CAS  PubMed  Google Scholar 

  27. 27.

    Cannon, G. C. et al. Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl. Environ. Microbiol. 67, 5351–5361 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Mangiapia, M. et al. Proteomic and mutant analysis of the CO2 concentrating mechanism of hydrothermal vent chemolithoautotroph Thiomicrospira crunogena. J. Bacteriol. 199, e00871-16 (2017).

  29. 29.

    Scott, K. M. et al. Genomes of ubiquitous marine and hypersaline Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira spp. encode a diversity of mechanisms to sustain chemolithoautotrophy in heterogeneous environments. Environ. Microbiol. 20, 2686–2708 (2018).

    CAS  PubMed  Google Scholar 

  30. 30.

    Scott, K. M. et al. Diversity in CO2-concentrating mechanisms among chemolithoautotrophs from the genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, ubiquitous in sulfidic habitats worldwide. Appl. Environ. Microbiol. 85, e02096-18 (2019).

  31. 31.

    Wetmore, K. M. et al. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. mBio 6, e00306–e00315 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Chaijarasphong, T. et al. Programmed ribosomal frameshifting mediates expression of the α-carboxysome. J. Mol. Biol. 428, 153–164 (2016).

    CAS  PubMed  Google Scholar 

  33. 33.

    Cai, F. et al. The pentameric vertex proteins are necessary for the icosahedral carboxysome shell to function as a CO2 leakage barrier. PLoS ONE 4, e7521 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Roberts, E. W., Cai, F., Kerfeld, C. A., Cannon, G. C. & Heinhorst, S. Isolation and characterization of the Prochlorococcus carboxysome reveal the presence of the novel shell protein CsoS1D. J. Bacteriol. 194, 787–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Wheatley, N. M., Sundberg, C. D., Gidaniyan, S. D., Cascio, D. & Yeates, T. O. Structure and identification of a pterin dehydratase-like protein as a ribulose-bisphosphate carboxylase/oxygenase (RuBisCO) assembly factor in the α-carboxysome. J. Biol. Chem. 289, 7973–7981 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Aigner, H. et al. Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2. Science 358, 1272–1278 (2017).

    CAS  PubMed  Google Scholar 

  37. 37.

    Mueller-Cajar, O. The diverse AAA+ machines that repair inhibited Rubisco active sites. Front. Mol. Biosci. 4, 31 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Krulwich, T. A., Hicks, D. B. & Ito, M. Cation/proton antiporter complements of bacteria: why so large and diverse? Mol. Microbiol. 74, 257–260 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Merlin, C., Masters, M., McAteer, S. & Coulson, A. Why is carbonic anhydrase essential to Escherichia coli? J. Bacteriol. 185, 6415–6424 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Du, J., Förster, B., Rourke, L., Howitt, S. M. & Price, G. D. Characterisation of cyanobacterial bicarbonate transporters in E. coli shows that SbtA homologs are functional in this heterologous expression system. PLoS ONE 9, e115905 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Cronk, J. D., Endrizzi, J. A., Cronk, M. R., O’Neill, J. W. & Zhang, K. Y. Crystal structure of E. coli β-carbonic anhydrase, an enzyme with an unusual pH-dependent activity. Protein Sci. 10, 911–922 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Krishnamurthy, V. M. et al. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein–ligand binding. Chem. Rev. 108, 946–1051 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Cronk, J. D. et al. Identification of a novel noncatalytic bicarbonate binding site in eubacterial β-carbonic anhydrase. Biochemistry 45, 4351–4361 (2006).

    CAS  PubMed  Google Scholar 

  44. 44.

    Shibata, M. et al. Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc. Natl Acad. Sci. USA 98, 11789–11794 (2001).

    CAS  PubMed  Google Scholar 

  45. 45.

    Maeda, S.-I., Badger, M. R. & Price, G. D. Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC7942. Mol. Microbiol. 43, 425–435 (2002).

    CAS  PubMed  Google Scholar 

  46. 46.

    Battchikova, N., Eisenhut, M. & Aro, E. M. Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. Biochim. Biophys. Acta 1807, 935–944 (2011).

    CAS  PubMed  Google Scholar 

  47. 47.

    Antonovsky, N. et al. Sugar synthesis from CO2 in Escherichia coli. Cell 166, 115–125 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Aguilera, J., Van Dijken, J. P., De Winde, J. H. & Pronk, J. T. Carbonic anhydrase (Nce103p): an essential biosynthetic enzyme for growth of Saccharomyces cerevisiae at atmospheric carbon dioxide pressure. Biochem. J. 391, 311–316 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Sirard, J. C., Mock, M. & Fouet, A. The three Bacillus anthracis toxin genes are coordinately regulated by bicarbonate and temperature. J. Bacteriol. 176, 5188–5192 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Abuaita, B. H. & Withey, J. H. Bicarbonate induces Vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect. Immun. 77, 4111–4120 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Rubin, B. E. et al. The essential gene set of a photosynthetic organism. Proc. Natl Acad. Sci. USA 112, E6634–E6643 (2015).

    CAS  Google Scholar 

  53. 53.

    Oakes, B. L., Nadler, D. C. & Savage, D. F. in Methods in Enzymology, Vol. 546 (eds Doudna, J. A. & Sontheimer, E. J.) Ch. 23, 491–511 (Academic, 2014).

  54. 54.

    Dobrinski, K. P., Longo, D. L. & Scott, K. M. The carbon-concentrating mechanism of the hydrothermal vent chemolithoautotroph Thiomicrospira crunogena. J. Bacteriol. 187, 5761–5766 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Zallot, R., Oberg, N. O. & Gerlt, J. A. ‘Democratized’ genomic enzymology web tools for functional assignment. Curr. Opin. Chem. Biol. 47, 77–85 (2018).

    CAS  PubMed  Google Scholar 

  58. 58.

    Dehal, P. S. et al. MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res. 38, D396–D400 (2010).

    CAS  PubMed  Google Scholar 

  59. 59.

    Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018).

    CAS  PubMed  Google Scholar 

  60. 60.

    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Slabinski, L. et al. XtalPred: a web server for prediction of protein crystallizability. Bioinformatics 23, 3403–3405 (2007).

    CAS  PubMed  Google Scholar 

  62. 62.

    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Newby, Z. E. R. et al. A general protocol for the crystallization of membrane proteins for X-ray structural investigation. Nat. Protoc. 4, 619–637 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Khalifah, R. G. The carbon dioxide hydration activity of carbonic anhydrase. J. Biol. Chem. 246, 2561–2573 (1971).

    CAS  PubMed  Google Scholar 

Download references


We thank A. Deutschbauer and M. Price for assistance with RB-TnSeq experiments and analysis, respectively; Z. Netter and K. Seed (V. cholerae), and D. Portnoy and R. Calendar (B. anthracis Sterne) for providing genomic DNA samples; A. Martin and J. Bard for assistance with stopped-flow experiments- E. Charles, W. Fischer, B. Forster, B. Long, R. Nichols, D. Price and P. Shih for conversations and comments on the manuscript. X-ray-based experiments were performed at the Lawrence Berkeley National Laboratory Advanced Light Source Beamline 8.3.1. J.J.D. was supported by National Institute of General Medical Sciences grant (T32GM066698). A.I.F. and T.G.L. were supported by a National Science Foundation Graduate Research Fellowship. C.B. was supported by an International Postdoctoral grant from the Swedish Research Council (637-2014-6914). D.F.S. was supported by a National Science Foundation grant (MCB-1818377; for genetic screen) and by a US Department of Energy Grant (DE-SC00016240; for DAB characterization).

Author information




J.J.D., A.I.F. and D.F.S. conceived, designed and supervised this study, and wrote the final manuscript with input from all of the authors; J.J.D. performed and analysed most of the biochemical experiments. C.B. performed CA activity assays. J.J.D., E.J.D. and K.W. generated biochemical reagents and strains. T.G.L. performed size-exclusion chromatography. J.J.D., T.G.L., L.M.O. and J.Y.W. developed the purification strategy. J.J.D., T.G.L. and L.M.O. developed the X-ray fluorescence assays. J.J.D. and A.W.C. generated the RB-TnSeq library. J.J.D. and S.D. generated the phylogenetic trees. All of the authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to David F. Savage.

Ethics declarations

Competing interests

The Regents of the University of California have filed a patent related to this work that lists J.J.D., A.I.F. and D.F.S. as inventors. D.F.S. is a co-founder of Scribe Therapeutics and a scientific advisory board member of Scribe Therapeutics and Mammoth Biosciences. All other authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Legends for Supplementary Files 1–5, Supplementary Table 1 and Supplementary Figs. 1–10.

Reporting Summary

Supplementary File 1

Information on important strains and reagents used in the study.

Supplementary File 2

Transposon insertion information and essentiality determinations broken down by gene. Data are from two technical replicates of the library mapping experiment. P values were calculated using a one-tailed binomial test as defined in the methods. P values are provided both before and after a Bonferroni correction. The numbers of transposon insertions seen for each gene in each replicate are also provided.

Supplementary File 3

Fitness effects and HCR phenotypes broken down by gene. Data are from two replicates of the competitive growth assay.

Supplementary File 4

FASTA file containing the genes used to generate Supplementary Fig. 4a.

Supplementary File 5

FASTA file containing the genes used to generate Fig. 5a.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Desmarais, J.J., Flamholz, A.I., Blikstad, C. et al. DABs are inorganic carbon pumps found throughout prokaryotic phyla. Nat Microbiol 4, 2204–2215 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing