Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids


Arbuscular mycorrhizal (AM) fungi are obligate symbionts that depend on living host plants to complete their life cycle1,2. This feature, which leads to their unculturability in the absence of plants, strongly hinders basic research and agricultural application of AM fungi. However, at least one AM fungus can grow and develop fertile spores independently of a host plant in co-culture with the bacterium Paenibacillus validus3. The bacteria-derived substances are thought to act as stimulants or nutrients for fungal sporulation, but these molecules have not been identified. Here, we show that (S)-12-methyltetradecanoic acid4,5, a methyl branched-chain fatty acid isolated from bacterial cultures, stimulates the branching of hyphae germinated from mother spores and the formation of secondary spores in axenic culture of the AM fungus Rhizophagus irregularis. Extensive testing of fatty acids revealed that palmitoleic acid induces more secondary spores than the bacterial fatty acid in R.irregularis. These induced spores have the ability to infect host plant roots and to generate daughter spores. Our work shows that, in addition to a major source of organic carbon6,7,8,9, fatty acids act as stimulants to induce infection-competent secondary spores in the asymbiotic stage and could provide the key to developing the axenic production of AM inoculum.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Induction of hyphal branching by fatty acids.
Fig. 2: Induction of sporulation by fatty acids.
Fig. 3: Transcriptomic responses of R.irregularis to palmitoleic acid.
Fig. 4: Identity of spores induced by palmitoleic acid.

Data availability

All of the raw sequence data obtained in this research have been deposited in the DDBJ Sequence Read Archive (DRA) under BioProject PRJDB6134 and PRJDB6135. The data that support the findings of this study are available from the corresponding author on request.


  1. 1.

    Bonfante, P. & Genre, A. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, 48 (2010).

    Article  Google Scholar 

  2. 2.

    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2008).

  3. 3.

    Hildebrandt, U., Ouziad, F., Marner, F. J. & Bothe, H. The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol. Lett. 254, 258–267 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    Daane, L. L. et al. PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int. J. Syst. Evol. Microbiol. 52, 131–139 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    Heyndrickx, M. et al. Paenibacillus (formerly Bacillus) gordonae (Pichinoty et al. 1986) Ash et al. 1994 is a later subjective synonym of Paenibacillus (formerly Bacillus) validus (Nakamura 1984) Ash et al. 1994: emended description of. Int. J. Syst. Bacteriol. 45, 661–669 (1995).

    CAS  Article  Google Scholar 

  6. 6.

    Bravo, A., Brands, M., Wewer, V., Dörmann, P. & Harrison, M. J. Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol. 214, 1631–1645 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Keymer, A. et al. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 6, e29107 (2017).

    Article  Google Scholar 

  8. 8.

    Jiang, Y. et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172–1175 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Luginbuehl, L. H. et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356, 1175–1178 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Tisserant, E. et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl Acad. Sci. USA 110, 20117–20122 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Tang, N. et al. A survey of the gene repertoire of Gigaspora rosea unravels conserved features among glomeromycota for obligate biotrophy. Front. Microbiol. 7, 233 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Maeda, T. et al. Evidence of non-tandemly repeated rDNAs and their intragenomic heterogeneity in Rhizophagus irregularis. Commun. Biol. 1, 87 (2018).

    Article  Google Scholar 

  13. 13.

    Kitahara, T., Aono, S. & Mori, K. Synthesis of both the enantiomers of aseanostatin P5 (sarcinic acid), an inhibitor of myeloperoxidase release, and four diastereomers of aggreceride A, a platelet aggregation inhibitor. Biosci. Biotechnol. Biochem. 59, 78–82 (1995).

    CAS  Article  Google Scholar 

  14. 14.

    Hildebrandt, U., Janetta, K. & Bothe, H. Towards growth of arbuscular mycorrhizal fungi independent of a plant host towards growth of arbuscular mycorrhizal fungi Independent of a plant host. Appl. Environ. Microbiol. 68, 1919–1924 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    Graham, J. H., Hodge, N. C. & Morton, J. B. Fatty acid methyl ester profiles for characterization of glomalean fungi and their endomycorrhizae. Appl. Environ. Microbiol. 61, 58–64 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Olsson, P. A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol. Ecol. 29, 303–310 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    Bentivenga, S. P. & Morton, J. B. Congruence of fatty acid methyl ester profiles and morphological characters of arbuscular mycorrhizal fungi in Gigasporaceae. Proc. Natl Acad. Sci. USA 93, 5659–5662 (1996).

    CAS  Article  Google Scholar 

  18. 18.

    Akiyama, K., Matsuzaki, K. & Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    Besserer, A., Bécard, G., Jauneau, A., Roux, C. & Séjalon-Delmas, N. GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol. 148, 402–413 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    Besserer, A. et al. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 4, e226 (2006).

    Article  Google Scholar 

  21. 21.

    Tsuzuki, S., Handa, Y., Takeda, N. & Kawaguchi, M. Strigolactone-induced putative secreted protein 1 is required for the establishment of symbiosis by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mol. Plant Microbe Interact. 29, 277–286 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Logi, C., Sbrana, C. & Giovannetti, M. Cellular events involved in survival of individual arbuscular mycorrhizal symbionts growing in the absence of the host. Appl. Environ. Microbiol. 64, 3473–3479 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ryan, R. P. & Dow, J. M. Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol. 19, 145–152 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Zhu, S., Vivanco, J. M. & Manter, D. K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl. Soil Ecol. 107, 324–333 (2016).

    Article  Google Scholar 

  25. 25.

    Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ. 32, 666–681 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    Nadal, M. & Paszkowski, U. Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 16, 473–479 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Frey-Klett, P., Garbaye, J. & Tarkka, M. The mycorrhiza helper bacteria revisited. New Phytol. 176, 22–36 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    Bonfante, P. & Anca, I.-A. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63, 363–383 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    Juge, C., Coughlan, A. P., Fortin, J. A. & Piché, Y. in Advances in Mycorrhizal Science and Technology (Khasa D. P. et al.) 39–50 (NRC Research Press, 2009).

  30. 30.

    Rosikiewicz, P., Bonvin, J. & Sanders, I. R. Cost-efficient production of in vitro Rhizophagus irregularis. Mycorrhiza 27, 477–486 (2017).

    Article  Google Scholar 

  31. 31.

    Maki, T., Nomachi, M., Yoshida, S. & Ezawa, T. Plant symbiotic microorganisms in acid sulfate soil: significance in the growth of pioneer plants. Plant Soil 310, 55–65 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  Google Scholar 

  36. 36.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Zhou, X., Lindsay, H. & Robinson, M. D. Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res. 42, e91 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14 (2010).

    Article  Google Scholar 

  40. 40.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    Kikuchi, Y. et al. Polyphosphate accumulation is driven by transcriptome alterations that lead to near-synchronous and near-equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytol. 204, 638–649 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Takeda, N. et al. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus. Plant Physiol. 167, 545–557 (2015).

    CAS  Article  Google Scholar 

Download references


We thank I. Nishida, H. Imai, T. Maeda, K. Ebine and M. Yamato for their critical suggestions, and Y. Ogawa, R. Oguchi, R. Okita, M. Ohashi, Y. Sugiura, S. Tanaka, A. Tokairin and Y. Yoshinori for their experimental support. We appreciate K. Yamaguchi, S. Shigenobu, Functional Genomics Facility and Data Integration and Analysis Facility and the NIBB Core Research Facilities for technical support. This work was supported by ACCEL (JPMJAC1403) from the Japan Science and Technology Agency; Grant-in-Aid for Scientific Research on Innovative Areas (22128006); Grant-in-Aid for Scientific Research (A) (15H01751) from the Japan Society for the Promotion of Science; and NIBB Collaborative Research Program (18-341).

Author information




K.A. and H.H. designed the identification of the signal compounds and the bioassays of the compounds. I.T. identified the signal compounds and performed the bioassays of the compounds. H.K., K.S. and M.K. designed the RNA-seq analysis. H.K., Y.K., Y.H and T.E. performed the RNA-seq analysis. H.K. and K.S. performed the characterization of induced spores. H.K. analysed the data. H.K., K.S., M.K. and K.A. wrote the paper.

Corresponding author

Correspondence to Kohki Akiyama.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Supplementary Tables 1–5.

Reporting Summary

Supplementary Table 4

Differentially expressed genes in response to palmitoleic acid (C16:1Δ9Z) and/or between hyphae and spores.

Supplementary Table 6

Genes co-regulated both by palmitoleic acid and intraradical mycelium.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kameoka, H., Tsutsui, I., Saito, K. et al. Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Nat Microbiol 4, 1654–1660 (2019).

Download citation

Further reading