Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci

Abstract

Glycans are the major carbon sources available to the human colonic microbiota. Numerous N-glycosylated proteins are found in the human gut, from both dietary and host sources, including immunoglobulins such as IgA that are secreted into the intestine at high levels. Here, we show that many mutualistic gut Bacteroides spp. have the capacity to utilize complex N-glycans (CNGs) as nutrients, including those from immunoglobulins. Detailed mechanistic studies using transcriptomic, biochemical, structural and genetic techniques reveal the pathway employed by Bacteroides thetaiotaomicron (Bt) for CNG degradation. The breakdown process involves an extensive enzymatic apparatus encoded by multiple non-adjacent loci and comprises 19 different carbohydrate-active enzymes from different families, including a CNG-specific endo-glycosidase activity. Furthermore, CNG degradation involves the activity of carbohydrate-active enzymes that have previously been implicated in the degradation of other classes of glycan. This complex and diverse apparatus provides Bt with the capacity to access the myriad different structural variants of CNGs likely to be found in the intestinal niche.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Complex N-glycans as a nutrient source for Bacteroides species.
Fig. 2: Genes upregulated in Bt during growth on CNG.
Fig. 3: The degradation of bi-antennary CNG by recombinant enzymes from Bt.
Fig. 4: Activity of BT1044GH18 endo β-GlcNAcase on immunoglobulin substrates and structure of the enzyme.
Fig. 5: GH20 β-hexosaminidase activity against α1AGp.
Fig. 6: Crystal structure of BT0459GH20

Similar content being viewed by others

Data availability

The full RNA-Seq data are provided in Supplementary Table 1 and have also been submitted to https://www.ncbi.nlm.nih.gov/geo/ with the accession number GSE129572. The crystal structures are deposited in the Protein Data Bank under the accession numbers 6Q63 and 6Q64. The other data that support the findings in this paper are available upon request from the corresponding authors.

References

  1. McNeil, N. I. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39, 338–342 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Khoruts, A., Dicksved, J., Jansson, J. K. & Sadowsky, M. J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J. Clin. Gastroenterol. 44, 354–360 (2010).

    PubMed  Google Scholar 

  4. O’Keefe, S. J. et al. Products of the colonic microbiota mediate the effects of diet on colon cancer risk. J. Nutr. 139, 2044–2048 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koropatkin, N. M., Martens, E. C., Gordon, J. I. & Smith, T. J. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16, 1105–1115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chung, C. Y., Majewska, N. I., Wang, Q., Paul, J. T. & Betenbaugh, M. J. SnapShot: N-glycosylation processing pathways across kingdoms. Cell 171, 258–258 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Mathias, A. & Corthesy, B. N-Glycans on secretory component: mediators of the interaction between secretory IgA and gram-positive commensals sustaining intestinal homeostasis. Gut Microbes 2, 287–293 (2011).

    Article  PubMed  Google Scholar 

  12. Corfield, A. P. The interaction of the gut microbiota with the mucus barrier in health and disease in human. Microorganisms 6, 78 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  13. Mestecky, J., Russell, M. W., Jackson, S. & Brown, T. A. The human IgA system: a reassessment. Clin. Immunol. Immunopathol. 40, 105–114 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Hughes, G. J., Reason, A. J., Savoy, L., Jaton, J. & Frutiger-Hughes, S. Carbohydrate moieties in human secretory component. Biochim. Biophys. Acta 1434, 86–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Garrido, D. et al. Endo-beta-N-acetylglucosaminidases from infant gut-associated bifidobacteria release complex N-glycans from human milk glycoproteins. Mol. Cell. Proteomics 11, 775–785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38, 779–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Bohle, L. A., Mathiesen, G., Vaaje-Kolstad, G. & Eijsink, V. G. An endo-beta-N-acetylglucosaminidase from Enterococcus faecalis V583 responsible for the hydrolysis of high-mannose and hybrid-type N-linked glycans. FEMS Microbiol. Lett. 325, 123–129 (2011).

    Article  PubMed  CAS  Google Scholar 

  18. Renzi, F. et al. The N-glycan glycoprotein deglycosylation complex (Gpd) from Capnocytophaga canimorsus deglycosylates human IgG. PLoS Pathog. 7, e1002118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Collin, M. & Fischetti, V. A. A novel secreted endoglycosidase from Enterococcus faecalis with activity on human immunoglobulin G and ribonuclease B. J. Biol. Chem. 279, 22558–22570 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Cao, Y., Rocha, E. R. & Smith, C. J. Efficient utilization of complex N-linked glycans is a selective advantage for Bacteroides fragilis in extraintestinal infections. Proc. Natl Acad. Sci. USA 111, 12901–12906 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robb, M. et al. Molecular characterization of N-glycan degradation and transport in Streptococcus pneumoniae and its contribution to virulence. PLoS Pathog. 13, e1006090 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sjogren, J. et al. EndoS2 is a unique and conserved enzyme of serotype M49 group A Streptococcus that hydrolyses N-linked glycans on IgG and alpha1-acid glycoprotein. Biochem. J. 455, 107–118 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Collin, M. & Olsen, A. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J. 20, 3046–3055 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dupoiron, S. et al. The N-glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing. J. Biol. Chem. 290, 6022–6036 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37, 186–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Ndeh, D. et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544, 65–70 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bagenholm, V. et al. Galactomannan catabolism onferred by a polysaccharide utilization locus of Bacteroides ovatus: enzyme synergy and crystal structure of a beta-mannanase. J. Biol. Chem. 292, 229–243 (2017).

    Article  PubMed  CAS  Google Scholar 

  30. Tamura, K. et al. Molecular mechanism by which prominent human gut bacteroidetes utilize mixed-linkage beta-glucans, major health-promoting cereal polysaccharides. Cell Rep. 21, 417–430 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Temple, M. J. et al. A Bacteroidetes locus dedicated to fungal 1,6-beta-glucan degradation: unique substrate conformation drives specificity of the key endo-1,6-beta-glucanase. J. Biol. Chem. 292, 10639–10650 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Larsbrink, J. et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506, 498–502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reeves, A. R., Wang, G. R. & Salyers, A. A. Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J. Bacteriol. 179, 643–649 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomas, F. et al. Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ. Microbiol. 14, 2379–2394 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Muchmore, E. A., Diaz, S. & Varki, A. A structural difference between the cell surfaces of humans and the great apes. Am. J. Phys. Anthropol. 107, 187–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Park, K. H. et al. Structural and biochemical characterization of the broad substrate specificity of Bacteroides thetaiotaomicron commensal sialidase. Biochim. Biophys. Acta 1834, 1510–1519 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Almagro-Moreno, S. & Boyd, E. F. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evolut. Biol. 9, 118 (2009).

    Article  CAS  Google Scholar 

  39. Phansopa, C. et al. Characterization of a sialate-O-acetylesterase (NanS) from the oral pathogen Tannerella forsythia that enhances sialic acid release by NanH, its cognate sialidase. Biochem. J. 472, 157–167 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Garbe, J. et al. EndoE from Enterococcus faecalis hydrolyzes the glycans of the biofilm inhibiting protein lactoferrin and mediates growth. PloS One 9, e91035 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Waddling, C. A., Plummer, T. H. Jr., Tarentino, A. L. & Van Roey, P. Structural basis for the substrate specificity of endo-beta-N-acetylglucosaminidase F(3). Biochemistry 39, 7878–7885 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Green, E. D., Adelt, G., Baenziger, J. U., Wilson, S. & Van Halbeek, H. The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz 1H NMR spectroscopy. J. Biol. Chem. 263, 18253–18268 (1988).

    CAS  PubMed  Google Scholar 

  43. Tailford, L. E. et al. Mannose foraging by Bacteroides thetaiotaomicron: structure and specificity of the beta-mannosidase, BtMan2A. J. Biol. Chem. 282, 11291–11299 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Pluvinage, B. et al. Inhibition of the pneumococcal virulence factor StrH and molecular insights into N-glycan recognition and hydrolysis. Structure 19, 1603–1614 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, T. et al. Structural determinants of an insect beta-N-acetyl-D-hexosaminidase specialized as a chitinolytic enzyme. J. Biol. Chem. 286, 4049–4058 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Theodoratou, E. et al. Glycosylation of plasma IgG in colorectal cancer prognosis. Sci. Rep. 6, 28098 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martens, E. C., Roth, R., Heuser, J. E. & Gordon, J. I. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J. Biol. Chem. 284, 18445–18457 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kubinak, J. L. et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17, 153–163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lawrence, R. M. & Pane, C. A. Human breast milk: current concepts of immunology and infectious diseases. Curr. Probl. Pediatr. Adolesc. Health Care 37, 7–36 (2007).

    Article  PubMed  Google Scholar 

  51. Charnock, S. J. et al. Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan. J. Biol. Chem. 272, 2942–2951 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Gasteiger E. et al. in The Proteomics Protocols Handbook (ed. Walker, J. M.) 571–607 (Humana Press, 2015).

  53. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  PubMed  Google Scholar 

  56. Sheldrick, G. M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D 66, 479–485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cowtan, K. Recent developments in classical density modification. Acta Crystallogr. D 66, 470–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D 62, 1002–1011 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Keegan, R. M. & Winn, M. D. Automated search-model discovery and preparation for structure solution by molecular replacement. Acta Crystallogr. D 63, 447–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D 66, 22–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. The PyMOL Molecular Graphics System v.2.0 (Schrödinger LLC, 2017).

  66. Collaborative Computational Project, Number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  67. Hehemann, J. H., Kelly, A. G., Pudlo, N. A., Martens, E. C. & Boraston, A. B. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc. Natl Acad. Sci. USA 109, 19786–19791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–d761 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, GBIF, 2018).

  71. Zhang, Z., Xie, J., Zhang, F. & Linhardt, R. J. Thin-layer chromatography for the analysis of glycosaminoglycan oligosaccharides. Anal. Biochem. 371, 118–120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ceroni, A. et al. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 7, 1650–1659 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Juncker, A. S. et al. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 12, 1652–1662 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Markowitz, V. M. et al. IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res. 40, D115–D122 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Holm, L. & Laakso, L. M. Dali server update. Nucleic Acids Res. 44, W351–W355 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Krissinal, E. & Hanrick, K. PDBeFold (European Bioinformatics Institute, 2009).

  79. Dereeper, A., Audic, S., Claverie, J. M. & Blanc, G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evolut. Biol. 10, 8 (2010).

    Article  CAS  Google Scholar 

  80. Dereeper, A. et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465–W469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  82. Letunic, I. & Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 46, D493–D496 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Letunic, I., Doerks, T. & Bork, P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43, D257–D260 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Morland (Newcastle University, UK) for his expert technical assistance, and F. Cuskin (Newcastle University, UK) and L. Royle (Ludger, UK) for insightful conversations about the data. We would like to thank Diamond Light Source (Oxfordshire, UK) for beamtime (proposal mx13587 and mx18598) and the staff of beamline I03 and 104-1 for assistance with crystal testing and data collection. We thank J. Casement (Bioinformatics Support Unit, Newcastle University, UK) for analysing the raw RNA-Seq data. We thank J. Sonnenberg (Stanford, USA) for the ΔBT0455 Bt strain, R. Lewis (Newcastle University, UK) for his guidance and advice in looking for structural homologues and R. Hirt (Newcastle University, UK) for his advice on phylogenetics. The work was funded by the BBSRC/Innovate UK IB catalyst award to D.N.B. ‘Glycoenzymes for Bioindustries’ (BB/M029018/1).

Author information

Authors and Affiliations

Authors

Contributions

J.B., A.S.L. and L.I.C. carried out enzyme kinetics. J.B., P.A.U., A.S.L., O.R. and L.I.C. carried out enzymes assays. J.H. made substrates. J.B. and L.I.C. carried out Bacteroides growth. L.I.C. carried out the whole-cell assays. P.A.U. and O.R. carried out the LC–MS. P.A.U. and L.I.C. analysed the LC–MS data. J.B. and L.I.C. purified proteins and set up crystal trays. A.B. collected crystals and data. A.B. and N.P. solved crystal structures. J.B., D.N. and L.I.C. produced Bacteroides gene deletion strains. L.I.C. carried out the bioinformatic analysis. L.I.C., D.N.B., P.A.U., J.B., A.S.L., D.I.R.S. and E.C.M. designed experiments. L.I.C., E.C.L. and D.N.B wrote the manuscript.

Corresponding authors

Correspondence to David N. Bolam or Lucy I. Crouch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results and Discussion, legends for Supplementary Tables 1–13, Supplementary Figures 1–24, and Supplementary References.

Reporting Summary

Supplementary Data 1

RNA seq data table showing average normalized base counts in glucose and bovine α1-acid glycoprotein (α1AGP) samples.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briliūtė, J., Urbanowicz, P.A., Luis, A.S. et al. Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat Microbiol 4, 1571–1581 (2019). https://doi.org/10.1038/s41564-019-0466-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0466-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing