Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein

Abstract

The peptidoglycan cell wall is essential for the survival and morphogenesis of bacteria1. For decades, it was thought that only class A penicillin-binding proteins (PBPs) and related enzymes effected peptidoglycan synthesis. Recently, it was shown that RodA—a member of the unrelated SEDS protein family—also acts as a peptidoglycan polymerase2,3,4. Not all bacteria require RodA for growth; however, its homologue, FtsW, is a core member of the divisome complex that appears to be universally essential for septal cell wall assembly5,6. FtsW was previously proposed to translocate the peptidoglycan precursor lipid II across the cytoplasmic membrane7,8. Here, we report that purified FtsW polymerizes lipid II into peptidoglycan, but show that its polymerase activity requires complex formation with its partner class B PBP. We further demonstrate that the polymerase activity of FtsW is required for its function in vivo. Thus, our findings establish FtsW as a peptidoglycan polymerase that works with its cognate class B PBP to produce septal peptidoglycan during cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FtsW is a peptidoglycan synthase.
Fig. 2: The PGT activity of FtsW is essential for cell division.
Fig. 3: StPBP2x does not require FtsW for crosslinking peptidoglycan.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are available from the corresponding authors upon request.

References

  1. Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

    Article  Google Scholar 

  2. Meeske, A. J. et al. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537, 634–638 (2016).

    Article  CAS  Google Scholar 

  3. Cho, H. et al. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol. 1, 16172 (2016).

    Article  CAS  Google Scholar 

  4. Emami, K. et al. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat. Microbiol. 2, 16253 (2017).

    Article  CAS  Google Scholar 

  5. Egan, A. J. F. & Vollmer, W. The physiology of bacterial cell division. Ann. NY Acad. Sci. 1277, 8–28 (2013).

    Article  CAS  Google Scholar 

  6. Otten, C., Brilli, M., Vollmer, W., Viollier, P. H. & Salje, J. Peptidoglycan in obligate intracellular bacteria. Mol. Microbiol. 107, 142–163 (2017).

    Article  Google Scholar 

  7. Mohammadi, T. et al. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30, 1425–1432 (2011).

    Article  CAS  Google Scholar 

  8. Mohammadi, T. et al. Specificity of the transport of lipid II by FtsW in Escherichia coli. J. Biol. Chem. 289, 14707–14718 (2014).

    Article  CAS  Google Scholar 

  9. Typas, A., Banzhaf, M., Gross, C. A. & Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10, 123–136 (2012).

    Article  CAS  Google Scholar 

  10. Santiago, M. et al. A new platform for ultra-high density Staphylococcus aureus transposon libraries. BMC Genomics 16, 252 (2015).

    Article  Google Scholar 

  11. Sjodt, M. et al. Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. Nature 556, 118–121 (2018).

    Article  CAS  Google Scholar 

  12. Rohs, P. D. A. et al. A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery. PLoS Genet. 14, e1007726 (2018).

    Article  Google Scholar 

  13. Weiss, D. S. et al. Localization of the Escherichia coli cell division protein Ftsl (PBP3) to the division site and cell pole. Mol. Microbiol. 25, 671–681 (1997).

    Article  CAS  Google Scholar 

  14. Fraipont, C. et al. The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology 157, 251–259 (2011).

    Article  CAS  Google Scholar 

  15. Qiao, Y. et al. Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams. Nat. Chem. Biol. 13, 793–798 (2017).

    Article  CAS  Google Scholar 

  16. Welsh, M. A. et al. Identification of a functionally unique family of penicillin-binding proteins. J. Am. Chem. Soc. 139, 17727–17730 (2017).

    Article  CAS  Google Scholar 

  17. Ovchinnikov, S. et al. Large-scale determination of previously unsolved protein structures using evolutionary information. eLife 4, e09248 (2015).

    Article  Google Scholar 

  18. Qiao, Y. et al. Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction. J. Am. Chem. Soc. 136, 14678–14681 (2014).

    Article  CAS  Google Scholar 

  19. Sham, L.-T. et al. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 719, 220–222 (2014).

    Article  Google Scholar 

  20. Rubino, F. A., Kumar, S., Ruiz, N., Walker, S. & Kahne, D. Membrane potential is required for MurJ function. J. Am. Chem. Soc. 140, 4481–4484 (2018).

    Article  CAS  Google Scholar 

  21. Ruiz, N. Filling holes in peptidoglycan biogenesis of Escherichia coli. Curr. Opin. Microbiol. 34, 1–6 (2016).

    Article  CAS  Google Scholar 

  22. Zheng, H., Chruszcz, M., Lasota, P., Lebioda, L. & Minor, W. Data mining of metal ion environments present in protein structures. J. Inorg. Biochem. 102, 1765–1776 (2008).

    Article  CAS  Google Scholar 

  23. Du, S., Pichoff, S. & Lutkenhaus, J. FtsEX acts on FtsA to regulate divisome assembly and activity. Proc. Natl Acad. Sci. USA 113, E5052–E5061 (2016).

    Article  CAS  Google Scholar 

  24. Modell, J. W., Hopkins, A. C. & Laub, M. T. A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW. Genes Dev. 25, 1328–1343 (2011).

    Article  CAS  Google Scholar 

  25. Modell, J. W., Kambara, T. K., Perchuk, B. S. & Laub, M. T. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus. PLoS Biol. 12, e1001977 (2014).

    Article  Google Scholar 

  26. McPherson, D. C. & Popham, D. L. Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis. J. Bacteriol. 185, 1423–1431 (2003).

    Article  CAS  Google Scholar 

  27. Bisson-Filho, A. W. et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739–743 (2017).

    Article  CAS  Google Scholar 

  28. Pinho, M. G. & Errington, J. Recruitment of penicillin-binding protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates. Mol. Microbiol. 55, 799–807 (2005).

    Article  CAS  Google Scholar 

  29. Monteiro, J. M. et al. Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis. Nature 554, 528–532 (2018).

    Article  CAS  Google Scholar 

  30. Rebets, Y. et al. Moenomycin resistance mutations in Staphylococcus aureus reduce peptidoglycan chain length and cause aberrant cell division. ACS Chem. Biol. 9, 459–467 (2014).

    Article  CAS  Google Scholar 

  31. Käll, L., Krogh, A. & Sonnhammer, E. L. L. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res. 35, 429–432 (2007).

    Article  Google Scholar 

  32. Gasteiger, E. et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003).

    Article  CAS  Google Scholar 

  33. Barrett, D. et al. Analysis of glycan polymers produced by peptidoglycan glycosyltransferases. J. Biol. Chem. 282, 31964–31971 (2007).

    Article  CAS  Google Scholar 

  34. Choi, K. H., Kumar, A. & Schweizer, H. P. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J. Microbiol. Methods 64, 391–397 (2006).

    Article  CAS  Google Scholar 

  35. Fenton, A. K. et al. CozE is a member of the MreCD complex that directs cell elongation in Streptococcus pneumoniae. Nat. Microbiol. 2, 16237 (2016).

    Article  Google Scholar 

  36. Berg, K. H., Biørnstad, T. J., Straume, D. & Håvarstein, L. S. Peptide-regulated gene depletion system developed for use in Streptococcus pneumoniae. J. Bacteriol. 193, 5207–5215 (2011).

    Article  CAS  Google Scholar 

  37. Kloosterman, T. G., Van Der Kooi-Pol, M. M., Bijlsma, J. J. E. & Kuipers, O. P. The novel transcriptional regulator SczA mediates protection against Zn2+ stress by activation of the Zn2+-resistance gene czcD in Streptococcus pneumoniae. Mol. Microbiol. 65, 1049–1063 (2007).

    Article  CAS  Google Scholar 

  38. Tsui, H. C. T. et al. Suppression of a deletion mutation in the gene encoding essential PBP2b reveals a new lytic transglycosylase involved in peripheral peptidoglycan synthesis in Streptococcus pneumoniae D39. Mol. Microbiol. 100, 1039–1065 (2016).

    Article  CAS  Google Scholar 

  39. Chan, P. F. et al. Characterization of a novel fucose-regulated promoter (PfcsK) suitable for gene essentiality and antibacterial mode-of-action studies in Streptococcus pneumoniae. J. Bacteriol. 185, 2051–2058 (2003).

    Article  CAS  Google Scholar 

  40. Lee, W. et al. The mechanism of action of lysobactin. J. Am. Chem. Soc. 138, 100–103 (2016).

    Article  CAS  Google Scholar 

  41. Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics. 2016, 5.6.1–5.6.37 (2016).

    Google Scholar 

  42. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Microscopy Resources on the North Quad core at the Harvard Medical School for help with imaging and analysis. LC-MS data were acquired on an Agilent 6520 Q-TOF mass spectrometer supported by the Taplin Funds for Discovery Program. Funding for this work was provided by National Institutes of Health grants R01 AI083365 (to T.G.B.), R01 AI099144 (to T.G.B. and S.W.), R01 GM076710 (to D.K. and S.W.), CETR U19 AI109764 (to A.C.K., D.K., T.G.B. and S.W.) and F32 GM123579 (to M.A.W.). A.T. is supported in part by the Funai Overseas Scholarship. W.L. is supported in part by the Charles A. King Trust Postdoctoral Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

A.T., T.G.B. and S.W. conceived the project. A.T., D.K., T.G.B. and S.W. designed and coordinated the overall study. The experiments were performed by A.T., M.A.W., L.S.M. and W.L. M.S. and A.C.K performed the bioinformatics analysis and provided advice on protein preparation. The manuscript was written by A.T., M.A.W., T.G.B. and S.W., with input from all authors.

Corresponding authors

Correspondence to Thomas G. Bernhardt or Suzanne Walker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–15 and Supplementary Tables 1–5.

Reporting Summary

Supplementary Data Set 1

Raw data for Supplementary Table 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taguchi, A., Welsh, M.A., Marmont, L.S. et al. FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. Nat Microbiol 4, 587–594 (2019). https://doi.org/10.1038/s41564-018-0345-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0345-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing